我写了一个算法,它(某种)“拓扑排序”(不精确)。该算法复制给定的图,然后操作副本(通过删除边)。在百万节点提升图上,如果我的算法需要 3.1 秒,则将给定图复制到新图会消耗 2.19 秒。
我可以删除边缘而不实际永久删除它们,例如 boost::graph 库中的某种掩蔽吗?算法完成后,我取消屏蔽所有边,图恢复其原始状态。我怀疑这应该使我的算法运行得更快。
我写了一个算法,它(某种)“拓扑排序”(不精确)。该算法复制给定的图,然后操作副本(通过删除边)。在百万节点提升图上,如果我的算法需要 3.1 秒,则将给定图复制到新图会消耗 2.19 秒。
我可以删除边缘而不实际永久删除它们,例如 boost::graph 库中的某种掩蔽吗?算法完成后,我取消屏蔽所有边,图恢复其原始状态。我怀疑这应该使我的算法运行得更快。
Boost.Graphfiltered_graph
似乎非常适合您想要的。不幸的是,我真的不知道它是否会比您当前的方法表现更好(我怀疑它会)。如果您决定实施这种方法,我很想听听结果。
#include <iostream>
#include <tuple>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/filtered_graph.hpp>
#include <boost/graph/topological_sort.hpp>
#include <boost/unordered_set.hpp>
struct Vertex
{
Vertex(){}
Vertex(int val):name(val){}
int name;
};
typedef boost::adjacency_list<boost::vecS,boost::vecS,boost::directedS,Vertex> graph_type;
typedef boost::graph_traits<graph_type>::vertex_descriptor vertex_descriptor;
typedef boost::graph_traits<graph_type>::edge_descriptor edge_descriptor;
// A hash function for edges.
struct edge_hash:std::unary_function<edge_descriptor, std::size_t>
{
edge_hash(graph_type const& g):g(g){}
std::size_t operator()(edge_descriptor const& e) const {
std::size_t seed = 0;
boost::hash_combine(seed, source(e,g));
boost::hash_combine(seed, target(e,g));
//if you don't use vecS as your VertexList container
//you will need to create and initialize a vertex_index property and then use:
//boost::hash_combine(seed,get(boost::vertex_index, g, source(e,g)));
//boost::hash_combine(seed,get(boost::vertex_index, g, target(e,g)));
return seed;
}
graph_type const& g;
};
typedef boost::unordered_set<edge_descriptor, edge_hash> edge_set;
typedef boost::filtered_graph<graph_type,boost::is_not_in_subset<edge_set> > filtered_graph_type;
template <typename Graph>
void print_topological_order(Graph const& g)
{
std::vector<vertex_descriptor> output;
topological_sort(g,std::back_inserter(output));
std::vector<vertex_descriptor>::reverse_iterator iter=output.rbegin(),end=output.rend();
for(;iter!=end;++iter)
std::cout << g[*iter].name << " ";
std::cout << std::endl;
}
int main()
{
graph_type g;
//BUILD THE GRAPH
vertex_descriptor v0 = add_vertex(0,g);
vertex_descriptor v1 = add_vertex(1,g);
vertex_descriptor v2 = add_vertex(2,g);
vertex_descriptor v3 = add_vertex(3,g);
vertex_descriptor v4 = add_vertex(4,g);
vertex_descriptor v5 = add_vertex(5,g);
edge_descriptor e4,e5;
add_edge(v0,v1,g);
add_edge(v0,v3,g);
add_edge(v2,v4,g);
add_edge(v1,v4,g);
std::tie(e4,std::ignore) = add_edge(v4,v3,g);
std::tie(e5,std::ignore) = add_edge(v2,v5,g);
//GRAPH BUILT
std::cout << "Original graph:" << std::endl;
print_topological_order(g);
edge_hash hasher(g);
edge_set removed(0,hasher); //need to pass "hasher" in the constructor since it is not default constructible
filtered_graph_type fg(g,removed); //creates the filtered graph
removed.insert(e4); //you can "remove" edges from the graph by adding them to this set
removed.insert(e5);
std::cout << "Filtered Graph after \"removing\" 2 edges" << std::endl;
print_topological_order(fg);
removed.clear(); //clearing the set restores your original graph
std::cout << "Filtered Graph after resetting" << std::endl;
print_topological_order(fg);
}