经过深入研究并基于此,建议我实施 k 最短路径算法,以便在大型无向、循环、加权图中找到第一、第二、第三……第 k 条最短路径。大约2000个节点。
维基百科上的伪代码是这样的:
function YenKSP(Graph, source, sink, K):
//Determine the shortest path from the source to the sink.
A[0] = Dijkstra(Graph, source, sink);
// Initialize the heap to store the potential kth shortest path.
B = [];
for k from 1 to K:
// The spur node ranges from the first node to the next to last node in the shortest path.
for i from 0 to size(A[i]) − 1:
// Spur node is retrieved from the previous k-shortest path, k − 1.
spurNode = A[k-1].node(i);
// The sequence of nodes from the source to the spur node of the previous k-shortest path.
rootPath = A[k-1].nodes(0, i);
for each path p in A:
if rootPath == p.nodes(0, i):
// Remove the links that are part of the previous shortest paths which share the same root path.
remove p.edge(i, i) from Graph;
// Calculate the spur path from the spur node to the sink.
spurPath = Dijkstra(Graph, spurNode, sink);
// Entire path is made up of the root path and spur path.
totalPath = rootPath + spurPath;
// Add the potential k-shortest path to the heap.
B.append(totalPath);
// Add back the edges that were removed from the graph.
restore edges to Graph;
// Sort the potential k-shortest paths by cost.
B.sort();
// Add the lowest cost path becomes the k-shortest path.
A[k] = B[0];
return A;
主要问题是我还不能为此编写正确的python脚本(删除边缘并将它们正确放回原位)所以我只能像往常一样依靠Igraph来做到这一点:
def yenksp(graph,source,sink, k):
global distance
"""Determine the shortest path from the source to the sink."""
a = graph.get_shortest_paths(source, sink, weights=distance, mode=ALL, output="vpath")[0]
b = [] #Initialize the heap to store the potential kth shortest path
#for xk in range(1,k):
for xk in range(1,k+1):
#for i in range(0,len(a)-1):
for i in range(0,len(a)):
if i != len(a[:-1])-1:
spurnode = a[i]
rootpath = a[0:i]
#I should remove edges part of the previous shortest paths, but...:
for p in a:
if rootpath == p:
graph.delete_edges(i)
spurpath = graph.get_shortest_paths(spurnode, sink, weights=distance, mode=ALL, output="vpath")[0]
totalpath = rootpath + spurpath
b.append(totalpath)
# should restore the edges
# graph.add_edges([(0,i)]) <- this is definitely not correct.
graph.add_edges(i)
b.sort()
a[k] = b[0]
return a
这是一个非常糟糕的尝试,它只返回列表中的一个列表
我不太确定我在做什么,我已经对这个问题感到非常绝望,在最后几天,我对此的看法发生了 180 度甚至一次的转变。我只是一个尽力而为的菜鸟。请帮忙。也可以建议 Networkx 实施。
PS这可能没有其他工作方法,因为我们已经在这里研究过了。我已经收到了很多建议,我欠社区很多。DFS 或 BFS 不起作用。图很大。
编辑:我不断更正python脚本。简而言之,这个问题的目的是正确的脚本。