我有这个为 IA 计算 k-means 的程序
#! /usr/bin/env python
# -*- coding: utf-8 -*-
from random import sample
from itertools import repeat
from math import sqrt
# Parametros
k = 6
maxit = 2
def leeValoracionesFiltradas (nomFichero = "valoracionesFiltradas.data"):
lineas = [(l.strip()).split("\t") for l in (open(nomFichero).readlines())]
diccio = {}
for l in lineas:
diccio[int(l[0])] = {}
for l in lineas:
diccio[int(l[0])][int(l[1])] = (float(l[2]),float(l[3]))
return diccio
def distEuclidea(dic1, dic2):
# Se calcula la suma de cuadrados de los elementos comunes a los dos diccionarios
sum2 = sum([pow(dic1[elem]-dic2[elem], 2)
for elem in dic1 if elem in dic2])
return sqrt(sum2)
def similitudEuclidea(dic1, dic2):
return 1/(1+distEuclidea(dic1, dic2))
def coefPearson(dic1, dic2):
# Se consiguen los elementos comunes en ambos diccionarios
comunes = [x for x in dic1 if x in dic2]
nComunes = float(len(comunes))
# Si no hay comunes -> cero
if nComunes==0:
return 0
# Calculo de las medias de cada diccionario
media1 = sum([dic1[x][1] for x in comunes]) / nComunes
media2 = sum([dic2[x][1] for x in comunes]) / nComunes
# Numerador y denominador
num = sum([(dic1[x][1] - media1) * (dic2[x][1] - media2) for x in comunes])
den1 = sqrt(sum([pow(dic1[x][1] - media1, 2) for x in comunes]))
den2 = sqrt(sum([pow(dic2[x][1] - media2, 2) for x in comunes]))
den = den1 * den2
# Caculo del coeficiente
if den==0:
return 0
return num/den
# Dado un diccionario {key1 : {key2 : valor}} calcula el agrupamiento k-means
# con k clusters (grupo), ejecutando maxit iteraciones, con la funcion de similitud especificada
# Retorna una tupla
# -{key1:numero de clusters} con las asignaciones de clusters (a que clusters pertenece cada elemento)
# -[{key2:valores}] una lista con los k centroides (media de los valores para cada clusters)
def kmeans (diccionario, k, maxit, similitud = coefPearson):
# K puntos aleatorios son elegidos como centroides incialmente
# Cada centroide es {key2 : valor}
centroides = [diccionario[x] for x in sample(diccionario.keys(), k)]
# Se asigna cada key1 a un numero de cluster
previo = None
asignacion = {}
# En cada iteracion se asignan puntos a los centroides y se calculan nuevos centroides
for it in range(maxit):
# Se asignan puntos a los centroides mas cercanos
for key1 in diccionario:
similitudes = map(similitud,repeat(diccionario[key1],k), centroides)
asignacion[key1] = similitudes.index(max(similitudes))
# Si no hay cambios en la asignacion, se termina
if previo == asignacion: break
previo = asignacion
# Se recalculan los centroides (se anotan los valores de cada key a cada centroide)
valores = {x : {} for x in range(k)}
contadores = {x : {} for x in range(k)}
for key1 in diccionario:
grupo = asignacion[key1]
for key2 in diccionario[key1]:
if not valores[grupo].has_key(key2):
valores [grupo][key2] = 0
contadores [grupo][key2] = 0
valores [grupo][key2] += diccionario[key1][key2][1]
contadores[grupo][key2] += 1
# Se calculan las medias (nuevos centroides)
centroides = []
for grupo in valores:
centro = {}
for key2 in valores[grupo]:
centro[key2] = round((valores[grupo][key2] / contadores[grupo][key2]),2)
centroides.append(centro)
if None in centroides: break
return (asignacion, centroides)
# Se obtiene el diccionario de valoraciones (las valoraciones ya han sido filtradas)
diccionario = leeValoracionesFiltradas()
# Se obtienen las asignaciones y los centroides con la correlacion de Pearson
tupla = kmeans (diccionario, k, maxit)
asignaciones = tupla[0]
centroids = tupla[1]
print asignaciones
print centroids
例如,当我为 maxit = 2 执行此操作时,它会抛出:
File "kmeans_dictio.py", line 46, in coefPearson
media2 = sum([dic2[x][1] for x in comunes]) / nComunes
TypeError: 'float' object has no attribute '__getitem__'
我怎样才能解决这个问题?