编辑我将原始答案保留在底部。正如保罗在评论中指出的那样,原始答案并没有真正回答 OP 的问题,并且可以使用 ndimage 过滤器更容易地实现。以下更繁琐的功能应该做正确的事情。它需要两个数组a
和c
,并返回 的窗口最小值和中窗口最小值位置处的a
值:c
a
def neighbor_min(a, c):
ac = np.concatenate((a[None], c[None]))
rows, cols = ac.shape[1:]
ret = np.empty_like(ac)
# Fill in the center
win_ac = as_strided(ac, shape=(2, rows-2, cols, 3),
strides=ac.strides+ac.strides[1:2])
win_ac = win_ac[np.ogrid[:2, :rows-2, :cols] +
[np.argmin(win_ac[0], axis=2)]]
win_ac = as_strided(win_ac, shape=(2, rows-2, cols-2, 3),
strides=win_ac.strides+win_ac.strides[2:3])
ret[:, 1:-1, 1:-1] = win_ac[np.ogrid[:2, :rows-2, :cols-2] +
[np.argmin(win_ac[0], axis=2)]]
# Fill the top, bottom, left and right borders
win_ac = as_strided(ac[:, :2, :], shape=(2, 2, cols-2, 3),
strides=ac.strides+ac.strides[2:3])
win_ac = win_ac[np.ogrid[:2, :2, :cols-2] +
[np.argmin(win_ac[0], axis=2)]]
ret[:, 0, 1:-1] = win_ac[:, np.argmin(win_ac[0], axis=0),
np.ogrid[:cols-2]]
win_ac = as_strided(ac[:, -2:, :], shape=(2, 2, cols-2, 3),
strides=ac.strides+ac.strides[2:3])
win_ac = win_ac[np.ogrid[:2, :2, :cols-2] +
[np.argmin(win_ac[0], axis=2)]]
ret[:, -1, 1:-1] = win_ac[:, np.argmin(win_ac[0], axis=0),
np.ogrid[:cols-2]]
win_ac = as_strided(ac[:, :, :2], shape=(2, rows-2, 2, 3),
strides=ac.strides+ac.strides[1:2])
win_ac = win_ac[np.ogrid[:2, :rows-2, :2] +
[np.argmin(win_ac[0], axis=2)]]
ret[:, 1:-1, 0] = win_ac[:, np.ogrid[:rows-2],
np.argmin(win_ac[0], axis=1)]
win_ac = as_strided(ac[:, :, -2:], shape=(2, rows-2, 2, 3),
strides=ac.strides+ac.strides[1:2])
win_ac = win_ac[np.ogrid[:2, :rows-2, :2] +
[np.argmin(win_ac[0], axis=2)]]
ret[:, 1:-1, -1] = win_ac[:, np.ogrid[:rows-2],
np.argmin(win_ac[0], axis=1)]
# Fill the corners
win_ac = ac[:, :2, :2]
win_ac = win_ac[:, np.ogrid[:2],
np.argmin(win_ac[0], axis=-1)]
ret[:, 0, 0] = win_ac[:, np.argmin(win_ac[0], axis=-1)]
win_ac = ac[:, :2, -2:]
win_ac = win_ac[:, np.ogrid[:2],
np.argmin(win_ac[0], axis=-1)]
ret[:, 0, -1] = win_ac[:, np.argmin(win_ac[0], axis=-1)]
win_ac = ac[:, -2:, -2:]
win_ac = win_ac[:, np.ogrid[:2],
np.argmin(win_ac[0], axis=-1)]
ret[:, -1, -1] = win_ac[:, np.argmin(win_ac[0], axis=-1)]
win_ac = ac[:, -2:, :2]
win_ac = win_ac[:, np.ogrid[:2],
np.argmin(win_ac[0], axis=-1)]
ret[:, -1, 0] = win_ac[:, np.argmin(win_ac[0], axis=-1)]
return ret
返回是一个(2, rows, cols)
数组,可以解包成两个数组:
>>> a = np.random.randint(100, size=(5,5))
>>> c = np.random.randint(100, size=(5,5))
>>> a
array([[42, 54, 18, 88, 26],
[80, 65, 83, 31, 4],
[51, 52, 18, 88, 52],
[ 1, 70, 5, 0, 89],
[47, 34, 27, 67, 68]])
>>> c
array([[94, 94, 29, 6, 76],
[81, 47, 67, 21, 26],
[44, 92, 20, 32, 90],
[81, 25, 32, 68, 25],
[49, 43, 71, 79, 77]])
>>> neighbor_min(a, c)
array([[[42, 18, 18, 4, 4],
[42, 18, 18, 4, 4],
[ 1, 1, 0, 0, 0],
[ 1, 1, 0, 0, 0],
[ 1, 1, 0, 0, 0]],
[[94, 29, 29, 26, 26],
[94, 29, 29, 26, 26],
[81, 81, 68, 68, 68],
[81, 81, 68, 68, 68],
[81, 81, 68, 68, 68]]])
然后可以将OP的案例解决为:
def bd_from_ac(a, c):
b,d = neighbor_min(a, c)
return a*b, d
尽管性能受到严重影响,但速度仍然非常快:
In [3]: a = np.random.rand(1000, 1000)
In [4]: c = np.random.rand(1000, 1000)
In [5]: %timeit bd_from_ac(a, c)
1 loops, best of 3: 570 ms per loop
除了获取它之外,您并没有真正将最小相邻元素的坐标用于其他任何事情,因此您不妨跳过该部分并创建一个min_neighbor
函数。如果您不想使用 cython 进行快速循环,您将不得不使用滚动窗口视图,例如 Paul 的链接中概述的。这通常会将您的(m, n)
数组转换为(m-2, n-2, 3, 3)
相同数据的视图,然后您将应用于np.min
最后两个轴。
不幸的是,您必须一次应用一个轴,因此您必须创建(m-2, n-2, 3)
数据的副本。幸运的是,您可以分两步计算最小值,首先沿一个轴开窗和最小化,然后沿另一个轴,并获得相同的结果。所以最多你会有输入大小的中间存储。如果需要,您甚至可以重用输出数组作为中间存储并避免内存分配,但这留作练习......
下面的函数就是这样做的。它有点冗长,因为它不仅要处理中心区域,还要处理四个边缘和四个角的特殊情况。除此之外,它是一个非常紧凑的实现:
def neighbor_min(a):
rows, cols = a.shape
ret = np.empty_like(a)
# Fill in the center
win_a = as_strided(a, shape=(m-2, n, 3),
strides=a.strides+a.strides[:1])
win_a = win_a.min(axis=2)
win_a = as_strided(win_a, shape=(m-2, n-2, 3),
strides=win_a.strides+win_a.strides[1:])
ret[1:-1, 1:-1] = win_a.min(axis=2)
# Fill the top, bottom, left and right borders
win_a = as_strided(a[:2, :], shape=(2, cols-2, 3),
strides=a.strides+a.strides[1:])
ret[0, 1:-1] = win_a.min(axis=2).min(axis=0)
win_a = as_strided(a[-2:, :], shape=(2, cols-2, 3),
strides=a.strides+a.strides[1:])
ret[-1, 1:-1] = win_a.min(axis=2).min(axis=0)
win_a = as_strided(a[:, :2], shape=(rows-2, 2, 3),
strides=a.strides+a.strides[:1])
ret[1:-1, 0] = win_a.min(axis=2).min(axis=1)
win_a = as_strided(a[:, -2:], shape=(rows-2, 2, 3),
strides=a.strides+a.strides[:1])
ret[1:-1, -1] = win_a.min(axis=2).min(axis=1)
# Fill the corners
ret[0, 0] = a[:2, :2].min()
ret[0, -1] = a[:2, -2:].min()
ret[-1, -1] = a[-2:, -2:].min()
ret[-1, 0] = a[-2:, :2].min()
return ret
您现在可以执行以下操作:
>>> a = np.random.randint(10, size=(5, 5))
>>> a
array([[0, 3, 1, 8, 9],
[7, 2, 7, 5, 7],
[4, 2, 6, 1, 9],
[2, 8, 1, 2, 3],
[7, 7, 6, 8, 0]])
>>> neighbor_min(a)
array([[0, 0, 1, 1, 5],
[0, 0, 1, 1, 1],
[2, 1, 1, 1, 1],
[2, 1, 1, 0, 0],
[2, 1, 1, 0, 0]])
你原来的问题可以解决为:
def bd_from_ac(a, c):
return a*neighbor_min(a), neighbor_min(c)
作为性能基准:
In [2]: m, n = 1000, 1000
In [3]: a = np.random.rand(m, n)
In [4]: c = np.random.rand(m, n)
In [5]: %timeit bd_from_ac(a, c)
1 loops, best of 3: 123 ms per loop