我正在尝试使用 AIC 标准找到最佳模型结构。我已经知道 d=1 和 D=1 的季节性分量等于 12。所以:
best.order<-c(0,0,0)
best.aic<-Inf
n <- length(x1)
for (i in 0:2) for (j in 0:2) {
fit <- arima(log(x1), c(i, 1, j),seasonal = list(order = c(i, 1, j), period = 12),method="CSS-ML")
fit.aic <- -2 * fit$loglik + (log(n) + 1) * length(fit$coef)
if (fit.aic < best.aic) {
best.order <- c(i,1,j)
best.arma <- arima(resid(fit), order=best.order)
best.aic <-fit.aic
}
}
它给了我这个结果:
best.arima
Call:
arima(x = resid(fit), order = best.order, seasonal = list(order = best.order,
period = 12), method = "CSS-ML")
Coefficients:
ma1 sma1
-0.9275 -0.8904
s.e. 0.0899 0.4776
sigma^2 estimated as 0.0005297: log likelihood = 143.67, aic = -281.34
这完全不同于:
auto.arima(log(x1),d=1,D=1)
ARIMA(1,1,1)
Coefficients:
ar1 ma1
0.4238 -0.8984
s.e. 0.1202 0.0489
sigma^2 estimated as 0.006367: log likelihood=84.98
AIC=-163.96 AICc=-163.63 BIC=-156.93
哪个是正确的结果?