下面的脚本通过 quantmod 中的函数提取 yahoo 数据,然后使用 RGL 库处理数据以形成 3D 图形,附加的是一个 ggplot 以显示我正在尝试用单独的线 geoms 创建表面的数据。问题是 3D 图表看起来非常难看并且由于前一个月到期的积分数量有限而被切割..谁能告诉我这里发生了什么,我能做些什么来解决这个问题..我需要平滑吗每个到期的线然后插值.... ?? volsurface http://img15.imageshack.us/img15/7338/surface.png ggplot2_smile http://img402.imageshack.us/img402/1272/volatilitysmilegoog.png
library(RQuantLib)
library(quantmod)
library(rgl)
library(akima)
library(ggplot2)
library(plyr)
GetIV <- function(type, value,
underlying, strike,dividendYield, riskFreeRate, maturity, volatility,
timeSteps=150, gridPoints=151) {
AmericanOptionImpliedVolatility(type, value,
underlying, strike,dividendYield, riskFreeRate, maturity, volatility,
timeSteps=150, gridPoints=151)$impliedVol
}
GetDelta <- function(type, underlying, strike,
dividendYield, riskFreeRate, maturity, volatility,
timeSteps=150, gridPoints=149, engine="CrankNicolson") {
AmericanOption(type,underlying, strike, dividendYield, riskFreeRate, maturity, volatility,
timeSteps=150, gridPoints=149, engine="CrankNicolson")$delta
}
# set what symbol you want vol surface for
underlying <- 'GOOG'
# set what your volatility forcast or assumption is
volforcast <- .25
# Get symbols current price
underlying.price <- getQuote(underlying,what=yahooQF("Last Trade (Price Only)"))$Last
OC <- getOptionChain(underlying, NULL)
#check data
head(OC)
lputs <- lapply(OC, FUN = function(x) x$puts[grep("[A-Z]\\d{6}[CP]\\d{8}$", rownames(x$puts)), ])
head(lputs) #check for NA values, yahoo returns all NA values sometimes
puts <- do.call('rbind', lputs )
#check data
head(puts,5)
symbols <- as.vector(unlist(lapply(lputs, rownames)))
expiries <- unlist(lapply(symbols, FUN = function(x) regmatches(x=x, regexpr('[0-9]{6}', x) )))
puts$maturity <- as.numeric((as.Date(expiries, "%y%m%d") - Sys.Date())/365)
puts$IV <- mapply(GetIV, value = puts$Ask, strike = puts$Strike, maturity = puts$maturity,
MoreArgs= list(type='put', underlying= underlying.price,
dividendYield=0, riskFreeRate = 0.01,
volatility = volforcast), SIMPLIFY=TRUE)
puts$delta <- mapply(GetDelta, strike = puts$Strike, volatility = puts$IV,
maturity = puts$maturity, MoreArgs= list(type='put',
underlying=underlying.price, dividendYield=0,
riskFreeRate = 0.01 ), SIMPLIFY=TRUE)
# subset out itm puts
puts <- subset(puts, delta < -.09 & delta > -.5 )
expiries.formated <- format(as.Date(levels(factor(expiries)), format = '%y%m%d'), "%B %d, %Y")
fractionofyear.levels <- levels(factor(puts$maturity))
xyz <- with(puts, interp(x=maturity, y=delta*100, z=IV*100,
xo=sort(unique(maturity)), extrap=FALSE ))
with(xyz, persp3d(x,y,z, col=heat.colors(length(z))[rank(z)], xlab='maturity',
ylab='delta', zlab='IV', main='IV Surface'))
putsplot <- ggplot(puts, aes(delta, IV, group = factor(maturity), color = factor(maturity))) +
labs(x = "Delta", y = "Implied Volatilty", title="Volatility Smile", color = "GooG \nExpiration") +
scale_colour_discrete( breaks=c(fractionofyear.levels),
labels=c(expiries.formated)) +
geom_line() +
geom_point()
putsplot