I want to use numpy.polyfit
for physical calculations, therefore I need the magnitude of the error.
2 回答
If you specify full=True
in your call to polyfit
, it will include extra information:
>>> x = np.arange(100)
>>> y = x**2 + 3*x + 5 + np.random.rand(100)
>>> np.polyfit(x, y, 2)
array([ 0.99995888, 3.00221219, 5.56776641])
>>> np.polyfit(x, y, 2, full=True)
(array([ 0.99995888, 3.00221219, 5.56776641]), # coefficients
array([ 7.19260721]), # residuals
3, # rank
array([ 11.87708199, 3.5299267 , 0.52876389]), # singular values
2.2204460492503131e-14) # conditioning threshold
The residual value returned is the sum of the squares of the fit errors, not sure if this is what you are after:
>>> np.sum((np.polyval(np.polyfit(x, y, 2), x) - y)**2)
7.1926072073491056
In version 1.7 there is also a cov
keyword that will return the covariance matrix for your coefficients, which you could use to calculate the uncertainty of the fit coefficients themselves.
As you can see in the documentation:
Returns
-------
p : ndarray, shape (M,) or (M, K)
Polynomial coefficients, highest power first.
If `y` was 2-D, the coefficients for `k`-th data set are in ``p[:,k]``.
residuals, rank, singular_values, rcond : present only if `full` = True
Residuals of the least-squares fit, the effective rank of the scaled
Vandermonde coefficient matrix, its singular values, and the specified
value of `rcond`. For more details, see `linalg.lstsq`.
Which means that if you can do a fit and get the residuals as:
import numpy as np
x = np.arange(10)
y = x**2 -3*x + np.random.random(10)
p, res, _, _, _ = numpy.polyfit(x, y, deg, full=True)
Then, the p
are your fit parameters, and the res
will be the residuals, as described above. The _
's are because you don't need to save the last three parameters, so you can just save them in the variable _
which you won't use. This is a convention and is not required.
@Jaime's answer explains what the residual means. Another thing you can do is look at those squared deviations as a function (the sum of which is res
). This is particularly helpful to see a trend that didn't fit sufficiently. res
can be large because of statistical noise, or possibly systematic poor fitting, for example:
x = np.arange(100)
y = 1000*np.sqrt(x) + x**2 - 10*x + 500*np.random.random(100) - 250
p = np.polyfit(x,y,2) # insufficient degree to include sqrt
yfit = np.polyval(p,x)
figure()
plot(x,y, label='data')
plot(x,yfit, label='fit')
plot(x,yfit-y, label='var')
So in the figure, note the bad fit near x = 0
: