这个算法对于我的基本编程技能来说是如此先进,以至于我只是不知道如何实现它。我将其发布在一个新问题中,因为我不能一直打扰在上一个问题的评论部分中单独给我算法的人。
MaxSet(node) = 1 if "node" is a leaf
MaxSet(node) = Max(1 + Sum{ i=0..3: MaxSet(node.Grandchildren[i]) },
Sum{ i=0..1: MaxSet(node.Children[i]) })
也感谢mehrdad的算法。
对我来说,这里的问题是实现两条总和线的一部分,我该怎么做?我需要标记这个算法选择的每个节点。它只是节点类中设置为 true 的“标记”变量。我不明白它是否也做出了选择节点的决定?
编辑以包括我的代码到目前为止:
public int maxSet(Posisjon<E> bt){
if (isExternal(bt)){
return 1;
}
return Math.max(1 + helper1(bt), helper2(bt));
}
private int helper1(Posisjon<E> node){
int tmp = 0;
if (hasLeft(node)){
if(hasLeft((Position<E>)node.leftChild())){
tmp += maxSet(node.leftChild().leftChild());
}
if(hasRight((Position<E>)node.leftChild())){
tmp += maxSet(node.leftChild().rightChild());
}
}
if(hasRight(node)){
if(hasLeft((Position<E>)node.rightChild())){
tmp += maxSet(node.leftChild().leftChild());
}
if(hasRight((Position<E>)node.rightChild())){
tmp += maxSet(node.leftChild().rightChild());
}
}
return tmp;
}
private int helper2(Posisjon<E> node){
int tmp = 0;
if(hasLeft(node)){
tmp +=maxSet(node.leftChild());
}
if(hasRight(node)){
tmp +=maxSet(node.rightChild());
}
return tmp;
}
这似乎有效,现在还剩下什么。是否实际上将节点标记为已选择?我会那样做吗?
更新了代码:
public ArrayList<Posisjon<E>> getSelectionSet(Posisjon<E> bt, ArrayList<Posisjon<E>> s){
if(bt.marked){
s.add(bt);
}
if(hasLeft(bt)){
if(hasLeft(bt.leftChild())){
getSelectionSet(bt.leftChild().leftChild(),s);
}
if(hasRight(bt.leftChild())){
getSelectionSet(bt.leftChild().rightChild(),s);
}
}
if(hasRight(bt)){
if(hasLeft(bt.rightChild())){
getSelectionSet(bt.rightChild().leftChild(),s);
}
if(hasRight(bt.rightChild())){
getSelectionSet(bt.rightChild().rightChild(),s);
}
}
return s;
}
public int maxSet(Posisjon<E> bt){
if (bt.visited){
return bt.computedMax;
}
bt.visited = true;
int maxIfCurrentNodeIsSelected = 1 + helper1(bt);
int maxIfCurrentNodeIsNotSelected = helper2(bt);
if (maxIfCurrentNodeIsSelected > maxIfCurrentNodeIsNotSelected){
bt.marked = true;
bt.computedMax = maxIfCurrentNodeIsSelected;
}else{
bt.marked = false;
bt.computedMax = maxIfCurrentNodeIsNotSelected;
}
return maxSet(bt);
}
提交后,我将发布整个代码!