我需要对一些包含推文的 csv 文件进行情绪分析。我正在使用SentiWordNet进行情绪分析。
我得到了他们在他们的网站上提供的以下示例 Java 代码。我不确定如何使用它。我要分析的 csv 文件的路径是C:\Users\MyName\Desktop\tweets.csv
. 的路径SentiWordNet_3.0.0.txt
是C:\Users\MyName\Desktop\SentiWordNet_3.0.0\home\swn\www\admin\dump\SentiWordNet_3.0.0_20130122.txt
。我是java新手,请帮忙,谢谢!下面的示例 java 代码的链接是这个。
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Set;
import java.util.Vector;
public class SWN3 {
private String pathToSWN = "data"+File.separator+"SentiWordNet_3.0.0.txt";
private HashMap<String, String> _dict;
public SWN3(){
_dict = new HashMap<String, String>();
HashMap<String, Vector<Double>> _temp = new HashMap<String, Vector<Double>>();
try{
BufferedReader csv = new BufferedReader(new FileReader(pathToSWN));
String line = "";
while((line = csv.readLine()) != null)
{
String[] data = line.split("\t");
Double score = Double.parseDouble(data[2])-Double.parseDouble(data[3]);
String[] words = data[4].split(" ");
for(String w:words)
{
String[] w_n = w.split("#");
w_n[0] += "#"+data[0];
int index = Integer.parseInt(w_n[1])-1;
if(_temp.containsKey(w_n[0]))
{
Vector<Double> v = _temp.get(w_n[0]);
if(index>v.size())
for(int i = v.size();i<index; i++)
v.add(0.0);
v.add(index, score);
_temp.put(w_n[0], v);
}
else
{
Vector<Double> v = new Vector<Double>();
for(int i = 0;i<index; i++)
v.add(0.0);
v.add(index, score);
_temp.put(w_n[0], v);
}
}
}
Set<String> temp = _temp.keySet();
for (Iterator<String> iterator = temp.iterator(); iterator.hasNext();) {
String word = (String) iterator.next();
Vector<Double> v = _temp.get(word);
double score = 0.0;
double sum = 0.0;
for(int i = 0; i < v.size(); i++)
score += ((double)1/(double)(i+1))*v.get(i);
for(int i = 1; i<=v.size(); i++)
sum += (double)1/(double)i;
score /= sum;
String sent = "";
if(score>=0.75)
sent = "strong_positive";
else
if(score > 0.25 && score<=0.5)
sent = "positive";
else
if(score > 0 && score>=0.25)
sent = "weak_positive";
else
if(score < 0 && score>=-0.25)
sent = "weak_negative";
else
if(score < -0.25 && score>=-0.5)
sent = "negative";
else
if(score<=-0.75)
sent = "strong_negative";
_dict.put(word, sent);
}
}
catch(Exception e){e.printStackTrace();}
}
public String extract(String word, String pos)
{
return _dict.get(word+"#"+pos);
}
}
新代码:
public class SWN3 {
private String pathToSWN = "C:\\Users\\MyName\\Desktop\\SentiWordNet_3.0.0\\home\\swn\\www\\admin\\dump\\SentiWordNet_3.0.0.txt";
private HashMap<String, String> _dict;
public SWN3(){
_dict = new HashMap<String, String>();
HashMap<String, Vector<Double>> _temp = new HashMap<String, Vector<Double>>();
try{
BufferedReader csv = new BufferedReader(new FileReader(pathToSWN));
String line = "";
while((line = csv.readLine()) != null)
{
String[] data = line.split("\t");
Double score = Double.parseDouble(data[2])-Double.parseDouble(data[3]);
String[] words = data[4].split(" ");
for(String w:words)
{
String[] w_n = w.split("#");
w_n[0] += "#"+data[0];
int index = Integer.parseInt(w_n[1])-1;
if(_temp.containsKey(w_n[0]))
{
Vector<Double> v = _temp.get(w_n[0]);
if(index>v.size())
for(int i = v.size();i<index; i++)
v.add(0.0);
v.add(index, score);
_temp.put(w_n[0], v);
}
else
{
Vector<Double> v = new Vector<Double>();
for(int i = 0;i<index; i++)
v.add(0.0);
v.add(index, score);
_temp.put(w_n[0], v);
}
}
}
Set<String> temp = _temp.keySet();
for (Iterator<String> iterator = temp.iterator(); iterator.hasNext();) {
String word = (String) iterator.next();
Vector<Double> v = _temp.get(word);
double score = 0.0;
double sum = 0.0;
for(int i = 0; i < v.size(); i++)
score += ((double)1/(double)(i+1))*v.get(i);
for(int i = 1; i<=v.size(); i++)
sum += (double)1/(double)i;
score /= sum;
String sent = "";
if(score>=0.75)
sent = "strong_positive";
else
if(score > 0.25 && score<=0.5)
sent = "positive";
else
if(score > 0 && score>=0.25)
sent = "weak_positive";
else
if(score < 0 && score>=-0.25)
sent = "weak_negative";
else
if(score < -0.25 && score>=-0.5)
sent = "negative";
else
if(score<=-0.75)
sent = "strong_negative";
_dict.put(word, sent);
}
}
catch(Exception e){e.printStackTrace();}
}
public Double extract(String word)
{
Double total = new Double(0);
if(_dict.get(word+"#n") != null)
total = _dict.get(word+"#n") + total;
if(_dict.get(word+"#a") != null)
total = _dict.get(word+"#a") + total;
if(_dict.get(word+"#r") != null)
total = _dict.get(word+"#r") + total;
if(_dict.get(word+"#v") != null)
total = _dict.get(word+"#v") + total;
return total;
}
public String classifytweet(){
String[] words = twit.split("\\s+");
double totalScore = 0, averageScore;
for(String word : words) {
word = word.replaceAll("([^a-zA-Z\\s])", "");
if (_sw.extract(word) == null)
continue;
totalScore += _sw.extract(word);
}
Double AverageScore = totalScore;
if(averageScore>=0.75)
return "very positive";
else if(averageScore > 0.25 && averageScore<0.5)
return "positive";
else if(averageScore>=0.5)
return "positive";
else if(averageScore < 0 && averageScore>=-0.25)
return "negative";
else if(averageScore < -0.25 && averageScore>=-0.5)
return "negative";
else if(averageScore<=-0.75)
return "very negative";
return "neutral";
}
public static void main(String[] args) {
// TODO Auto-generated method stub
}