8

按照上一个问题使用data.table

DT = data.table(x=sample(letters,1e7,T),y=sample(1:25,1e7,T),rnorm(1e7))
setkey(DT,x,y)

我们可以使用二分查找来查找吗

DT[x=='a' | y==25]

请记住DT[J('a',25)] == DT[x=='a' & y==25]

4

1 回答 1

8

是的:
为了进行二元搜索,我们需要适当的索引。

  indx <- rbind(DT[y==25, list(y=25), by=x], DT[.("a"), list(x="a"), by=y], use.names=TRUE)
  indx <- setdiff(indx, setdiff(indx, unique(DT[, key(DT), with=FALSE])))
  indx

  DT[.(indx)]

基准测试
这使我们比矢量化搜索提高了 10 倍以上。

  identical(setkey(DT[.(indx)]), setkey(DT[x=="a" | y == 25]))
  # [1] TRUE


  library(microbenchmark)
  microbenchmark(UsingIndx = DT[.(indx)],  UsingVecSearch = DT[x=="a" | y == 25], times=100 )

  Unit: milliseconds
              expr       min        lq    median        uq      max
  1      UsingIndx  34.27562  41.70119  48.13215  49.29752 231.1669
  2 UsingVecSearch 506.62670 545.85673 636.67701 680.93894 802.0842


为方便起见,我们可以将代码的“创建索引”部分包装成一个不错的函数,这样我们就可以在一行中调用它。例如:

DT[.(OrIndx("a", 25, DT))]

其中OrIndx()定义如下:

OrIndx <- function(xval, yval, DT)  {
  # TODO: Allow for arbitrary columns and column names
  if(!is.data.table(DT))
    stop("DT is not a data.table")

  # create all appropriate combinations
  indx <- rbind(DT[y==yval, list(y=yval), by=x], DT[.(xval), list(x=xval), by=y], use.names=TRUE)

  # take out any combinations in indx that are not actually present in DT and return 
  return( setdiff(indx, setdiff(indx, unique(DT[, key(DT), with=FALSE]))) )
}

解释:

这里的想法是执行“或”搜索需要某种形式的组合。
在标准向量搜索中,这种组合是每个单独向量搜索的结果。

data.table 通过允许搜索提供了一些极大的速度改进,例如

 DT[.(c("cdf", "tmb"), c(25, 3))] 

因此,该问题的自然解决方案是使用:

 DT[.(c(<all values of x>, "a"), c(25, <all values of y>))] 

唯一的问题是回收不能正确排列。
有一个像这样的选择是理想的

 DT[.(  list( c(unique(x), y=25), c(x="a", y=unique(y) )  )]

但据我所知,这还没有实现(还没有!)
所以相反,我们可以采取适当的组合。
上面的函数OrIndx正是这样做的。 (它又快又脏,并且有更有效的方法来创建索引)


更新其他基准

根据@Aruns 的建议,我们包括

rbind(DT[J("a")], DT[J(setdiff(unique(x), "a"), 25)])
rbindlist(list( DT[J("a")], DT[J(setdiff(unique(x), "a"), 25)] ))

在 1e6 和 1e7 行上测试:

  ## Using 1 Million rows
  > microbenchmark(Using_Indx = DT[.(indx)], Using_RbindList = rbindlist(list(DT[J("a")], DT[J(setdiff(unique(x), "a"), 25)])), Using_Rbind = rbind(DT[J("a")], DT[J(setdiff(unique(x), "a"), 25)]),  Using_VecSearch = DT[x=="a" | y == 25], times=70L )
  Unit: milliseconds
               expr       min        lq    median        uq        max
  1      Using_Indx  4.865089  5.755615  5.813938  5.957352   6.880743
  2     Using_Rbind 42.657953 49.239558 49.682407 50.505977 139.770670
  3 Using_RbindList 36.319170 44.169151 44.484350 45.279158 155.361338
  4 Using_VecSearch 49.003307 64.030384 64.443666 65.123886 150.099946


  ## Using 10 Milliion rows
  Unit: milliseconds
               expr       min       lq   median        uq      max
  1      Using_Indx  33.71108  47.5402  48.7574  50.75285 122.0950
  2     Using_rbind 492.38244 535.6062 565.8623 590.92841 727.3907
  3 Using_RbindList 436.29325 478.3626 507.4665 525.25980 657.6639
  4 Using_VecSearch 511.86248 607.8046 643.9822 688.36733 765.3997

  # Making sure all the same results: 
  > identical(setkey(DT[.(indx)]), setkey(DT[x=="a" | y == 25]))
  [1] TRUE
  > identical(setkey(DT[.(indx)]), setkey(rbind(DT[J("a")], DT[J(setdiff(unique(x), "a"), 25)])))
  [1] TRUE

请注意,对于 SMALL 表(小于15K行),向量搜索更快(对于非常小的表,大约快两倍)

  ## Using  100 Rows
  > microbenchmark(Using_Indx = DT[.(indx)], Using_RbindList = rbindlist(list(DT[J("a")], DT[J(setdiff(unique(x), "a"), 25)])), Using_rbind = rbind(DT[J("a")], DT[J(setdiff(unique(x), "a"), 25)]),  Using_VecSearch = DT[x=="a" | y == 25], times=150L )
  Unit: microseconds
               expr      min       lq    median       uq      max
  1      Using_Indx  884.819  901.854  917.3715  933.642 9740.046
  2     Using_rbind 2385.842 2424.893 2462.5210 2502.704 4266.637
  3 Using_RbindList 1962.504 2005.594 2027.4085 2069.516 4238.146
  4 Using_VecSearch  386.867  401.328  407.5730  420.647 2908.090

这种模式一直保持到大约 10,000 行,此时我们开始看到收益:

  ## 10,000 Rows
  Unit: microseconds
               expr      min       lq    median       uq      max
  1      Using_Indx  891.374  921.784  931.6585  956.737 3780.971
  4 Using_VecSearch  796.316  815.965  824.1480  845.151 2531.314

  ## 15,000 Rows
  Unit: microseconds
               expr      min       lq   median       uq      max
  1      Using_Indx  913.963  939.198  954.518  986.609 2900.174
  4 Using_VecSearch 1018.830 1041.449 1053.098 1072.188 8418.470

  ## 30,000 Rows
  Unit: microseconds
               expr      min       lq   median       uq       max
  1      Using_Indx  964.402  995.883 1018.535 1045.908  5999.390
  4 Using_VecSearch 1649.231 1709.090 1801.760 1927.976  8868.470

  ## 100,000 Rows
  Unit: milliseconds
               expr      min       lq   median       uq       max
  1      Using_Indx 1.142318 1.181023 1.198611 1.268417  3.611945
  4 Using_VecSearch 4.663948 4.763179 5.052995 6.058354 12.133510

  ## 10,000,000 Rows   (only ran 30 reps for this one)
  Unit: milliseconds
               expr       min        lq    median        uq      max
  1      Using_Indx  33.95004  42.24995  48.90363  50.15424 177.0991
  2 Using_VecSearch 512.34760 557.02867 622.37670 662.14323 861.3465
于 2013-03-24T15:59:25.293 回答