我正在阅读“使用 Fortran 进行科学软件开发”一书,其中有一个我认为非常有趣的练习:
“创建一个名为 MatrixMultiplyModule 的 Fortran 模块。向其中添加三个名为 LoopMatrixMultiply、IntrinsicMatrixMultiply 和 MixMatrixMultiply 的子例程。每个例程应将两个实矩阵作为参数,执行矩阵乘法,并通过第三个参数返回结果。LoopMatrixMultiply 应完全编写有do循环,没有数组操作或内在过程; IntrinsicMatrixMultiply应该使用matmul内在函数编写; MixMatrixMultiply应该使用一些do循环和内在函数dot_product编写。编写一个小程序来测试这三种不同方式的性能对不同大小的矩阵执行矩阵乘法。”
我对两个 2 阶矩阵的乘法进行了一些测试,以下是不同优化标志下的结果:
compiler:ifort version 13.0.0 on Mac
这是我的问题:
为什么在 -O0 下它们具有大致相同的性能,但使用 -O3 时 matmul 具有巨大的性能提升,而显式循环和点积的性能提升较小?另外,为什么 dot_product 似乎与显式循环相比具有相同的性能?
我使用的代码如下:
module MatrixMultiplyModule
contains
subroutine LoopMatrixMultiply(mtx1,mtx2,mtx3)
real,intent(in) :: mtx1(:,:),mtx2(:,:)
real,intent(out),allocatable :: mtx3(:,:)
integer :: m,n
integer :: i,j
if(size(mtx1,dim=2) /= size(mtx2,dim=1)) stop "input array size not match"
m=size(mtx1,dim=1)
n=size(mtx2,dim=2)
allocate(mtx3(m,n))
mtx3=0.
do i=1,m
do j=1,n
do k=1,size(mtx1,dim=2)
mtx3(i,j)=mtx3(i,j)+mtx1(i,k)*mtx2(k,j)
end do
end do
end do
end subroutine
subroutine IntrinsicMatrixMultiply(mtx1,mtx2,mtx3)
real,intent(in) :: mtx1(:,:),mtx2(:,:)
real,intent(out),allocatable :: mtx3(:,:)
integer :: m,n
integer :: i,j
if(size(mtx1,dim=2) /= size(mtx2,dim=1)) stop "input array size not match"
m=size(mtx1,dim=1)
n=size(mtx2,dim=2)
allocate(mtx3(m,n))
mtx3=matmul(mtx1,mtx2)
end subroutine
subroutine MixMatrixMultiply(mtx1,mtx2,mtx3)
real,intent(in) :: mtx1(:,:),mtx2(:,:)
real,intent(out),allocatable :: mtx3(:,:)
integer :: m,n
integer :: i,j
if(size(mtx1,dim=2) /= size(mtx2,dim=1)) stop "input array size not match"
m=size(mtx1,dim=1)
n=size(mtx2,dim=2)
allocate(mtx3(m,n))
do i=1,m
do j=1,n
mtx3(i,j)=dot_product(mtx1(i,:),mtx2(:,j))
end do
end do
end subroutine
end module
program main
use MatrixMultiplyModule
implicit none
real,allocatable :: a(:,:),b(:,:)
real,allocatable :: c1(:,:),c2(:,:),c3(:,:)
integer :: n
integer :: count, rate
real :: timeAtStart, timeAtEnd
real :: time(3,10)
do n=100,1000,100
allocate(a(n,n),b(n,n))
call random_number(a)
call random_number(b)
call system_clock(count = count, count_rate = rate)
timeAtStart = count / real(rate)
call LoopMatrixMultiply(a,b,c1)
call system_clock(count = count, count_rate = rate)
timeAtEnd = count / real(rate)
time(1,n/100)=timeAtEnd-timeAtStart
call system_clock(count = count, count_rate = rate)
timeAtStart = count / real(rate)
call IntrinsicMatrixMultiply(a,b,c2)
call system_clock(count = count, count_rate = rate)
timeAtEnd = count / real(rate)
time(2,n/100)=timeAtEnd-timeAtStart
call system_clock(count = count, count_rate = rate)
timeAtStart = count / real(rate)
call MixMatrixMultiply(a,b,c3)
call system_clock(count = count, count_rate = rate)
timeAtEnd = count / real(rate)
time(3,n/100)=timeAtEnd-timeAtStart
deallocate(a,b)
end do
open(1,file="time.txt")
do n=1,10
write(1,*) time(:,n)
end do
close(1)
deallocate(c1,c2,c3)
end program