我正在开发一个机器人项目的前端(一种使用一些传感器和地图进行自我定位的“自动”汽车——从 SVG 文件生成)。
为了使机器人可控,我们必须在其当前位置和目标之间生成路径。我为此使用了最简单的算法:A*。
这样做我得到了一些奇怪的结果:汽车倾向于以 45° 的倍数行驶,还有一个特别烦人的问题:一些生成的路径非常嘈杂!
在这种情况下,请查看橙色矩形附近的嘈杂路径:
有没有办法避免那些奇怪/嘈杂的结果?最终,我们希望建立一条航向角变化最少的路径。(汽车可以在不移动的情况下转动,因此我们不需要任何路径“平滑”)。
这是我的 A* 实现:
def search(self, begin, goal):
if goal.x not in range(self.width) or goal.y not in range(self.height):
print "Goal is out of bound"
return []
elif not self.grid[begin.y][begin.x].reachable:
print "Beginning is unreachable"
return []
elif not self.grid[goal.y][goal.x].reachable:
print "Goal is unreachable"
return []
else:
self.cl = set()
self.ol = set()
curCell = begin
self.ol.add(curCell)
while len(self.ol) > 0:
# We choose the cell in the open list having the minimum score as our current cell
curCell = min(self.ol, key = lambda x : x.f)
# We add the current cell to the closed list
self.ol.remove(curCell)
self.cl.add(curCell)
# We check the cell's (reachable) neighbours :
neighbours = self.neighbours(curCell)
for cell in neighbours:
# If the goal is a neighbour cell :
if cell == goal:
cell.parent = curCell
self.path = cell.path()
self.display()
self.clear()
return self.path
elif cell not in self.cl:
# We process the cells that are not in the closed list
# (processing <-> calculating the "F" score)
cell.process(curCell, goal)
self.ol.add(cell)
编辑1:根据大众需求,这是分数计算功能(过程):
def process(self, parent, goal):
self.parent = parent
self.g = parent.distance(self)
self.h = self.manhattanDistance(goal)
self.f = self.g + self.h
编辑这是邻居方法(根据user1884905的回答更新):
def neighbours(self, cell, radius = 1, unreachables = False, diagonal = True):
neighbours = set()
for i in xrange(-radius, radius + 1):
for j in xrange(-radius, radius + 1):
x = cell.x + j
y = cell.y + i
if 0 <= y < self.height and 0 <= x < self.width and ( self.grid[y][x].reachable or unreachables ) and (diagonal or (x == cell.x or y == cell.y)) :
neighbours.add(self.grid[y][x])
return neighbours
(这看起来很复杂,但它只给出了一个单元格的 8 个邻居——包括对角邻居;它也可以采用不同于 1 的半径,因为它用于其他特征)
和距离计算(取决于对角线邻居的使用与否:)
def manhattanDistance(self, cell):
return abs(self.x - cell.x) + abs(self.y - cell.y)
def diagonalDistance(self, cell):
xDist = abs(self.x - cell.x)
yDist = abs(self.y - cell.y)
if xDist > yDist:
return 1.4 * yDist + (xDist - yDist)
else:
return 1.4 * xDist + (yDist - xDist)