5

我有一个包含以下前三列的数据集。包括购物篮 ID(唯一标识符)、销售金额(美元)和交易日期。我想为数据集的每一行计算以下列,我想在 Python 中计算它。

同一篮子的先前销售(如果有);当前购物篮的销售计数;当前篮子的平均日期(如果有);当前购物篮的最大截止日期(如果有)

Basket  Sale   Date       PrevSale SaleCount MeanToDate MaxToDate
88      $15 3/01/2012                1      
88      $30 11/02/2012      $15      2         $23        $30
88      $16 16/08/2012      $30      3         $20        $30
123     $90 18/06/2012               1      
477     $77 19/08/2012               1      
477     $57 11/12/2012      $77      2         $67        $77
566     $90 6/07/2012                1      

我对 Python 很陌生,我真的很难找到任何东西来以一种奇特的方式来做这件事。我已经按 BasketID 和 Date 对数据(如上)进行了排序,因此我可以通过为每个篮子向前移动一个来批量获得先前的销售。除了循环之外,不知道如何以有效的方式获取 MeanToDate 和 MaxToDate ......有什么想法吗?

4

2 回答 2

4

这应该可以解决问题:

from pandas import concat
from pandas.stats.moments import expanding_mean, expanding_count

def handler(grouped):
    se = grouped.set_index('Date')['Sale'].sort_index()
    # se is the (ordered) time series of sales restricted to a single basket
    # we can now create a dataframe by combining different metrics
    # pandas has a function for each of the ones you are interested in!
    return  concat(
        {
            'MeanToDate': expanding_mean(se), # cumulative mean
            'MaxToDate': se.cummax(),         # cumulative max
            'SaleCount': expanding_count(se), # cumulative count
            'Sale': se,                       # simple copy
            'PrevSale': se.shift(1)           # previous sale
        },
        axis=1
     )

# we then apply this handler to all the groups and pandas combines them
# back into a single dataframe indexed by (Basket, Date)
# we simply need to reset the index to get the shape you mention in your question
new_df = df.groupby('Basket').apply(handler).reset_index()

您可以在此处阅读有关分组/聚合的更多信息。

于 2013-03-19T00:54:21.197 回答
0


import pandas as pd
pd.__version__  # u'0.24.2'

from pandas import concat

def handler(grouped):
    se = grouped.set_index('Date')['Sale'].sort_index()
    return  concat(
        {
            'MeanToDate': se.expanding().mean(),   # cumulative mean
            'MaxToDate': se.expanding().max(),  # cumulative max
            'SaleCount': se.expanding().count(),   # cumulative count
            'Sale': se,                # simple copy
            'PrevSale': se.shift(1)   # previous sale
        },
        axis=1
     )

###########################
from datetime import datetime  
df = pd.DataFrame({'Basket':[88,88,88,123,477,477,566],
                  'Sale':[15,30,16,90,77,57,90],
                  'Date':[datetime.strptime(ds,'%d/%m/%Y') 
                          for ds in ['3/01/2012','11/02/2012','16/08/2012','18/06/2012',
                                    '19/08/2012','11/12/2012','6/07/2012']]})
#########

new_df = df.groupby('Basket').apply(handler).reset_index()
于 2019-08-13T10:23:12.950 回答