我有一个类 Foo,它有两个 A 和 B 类型的任意数据成员。对 Foo::operator()(Arg &&) 的调用将参数转发给这两个成员并返回结果的总和。我可以看到几种方法来实现所有必要的类型推导。是否有一些首选方法可以减少编译器的压力?我的意思是编译时意义上的“应变”,如果嵌套太深会达到内部限制等。你能概括一下,还是它对给定的编译器高度特定?
我可以做“天真的”自动 decltype 变体:
template <typename A, typename B>
class Foo
{
public:
Foo(A a, B b) : m_a(std::move(a)), m_b(std::move(b)) { }
template <typename Arg>
auto operator()(Arg && arg) -> decltype(m_a(std::forward<Arg>(arg)) + m_b(std::forward<Arg>(arg)))
{
return m_a(std::forward<Arg>(arg)) + m_b(std::forward<Arg>(arg));
}
private:
A m_a;
B m_b;
};
我可以编写一个辅助结构,它只对类型而不是在“真实”实例上运行,而是在 std::declval<> 创建的实例上运行
template <typename A, typename B, typename Arg>
struct Foo_Returns
{
typedef decltype(std::declval<A>()(std::declval<Arg>()) +
std::declval<B>()(std::declval<Arg>())) type;
}
template <typename A, typename B>
class Foo
{
public:
Foo(A a, B b) : m_a(std::move(a)), m_b(std::move(b)) { }
template <typename Arg>
typename Foo_Returns<A, B, Arg>::type
operator()(Arg && arg)
{
return m_a(std::forward<Arg>(arg)) + m_b(std::forward<Arg>(arg));
}
private:
A m_a;
B m_b;
};
还有更多的可能性吗?
现在让它变得更难:我们有两个特征 is_green<> 和 is_blue<>。如果 Arg 为绿色,Foo 的 operator() 应将 Arg 转发给 A 和 B 的成员函数绿色并返回结果之和,类似于 Arg 为蓝色。一种类型永远不会同时是绿色和蓝色。应该可以添加其他类型的风格(因此不允许使用 bool 值来指示蓝色或绿色)。
一种变体将尽可能使用标签调度和 auto -> decltype(...) :
struct green_tag { };
struct blue_tag { };
struct error_tag;
template <typename T>
struct category
{
typedef typename std::conditional<is_green<T>::value,
green_tag,
typename std::conditional<is_blue<T>::value,
blue_tag,
error_tag
>::type
>::type type;
}
template <typename A, typename B>
class Foo
{
public:
Foo(A a, B b) : m_a(std::move(a)), m_b(std::move(b)) { }
template <typename Arg>
auto operator()(Arg && arg) -> decltype(impl(std::forward<Arg>(arg), typename category<Arg>::type()))
{
return impl(std::forward<Arg>(arg), typename category<Arg>::type());
}
private:
template <typename Arg>
auto impl(Arg && arg, green_tag) -> decltype(m_a.green(std::forward<Arg>(arg)) + m_b.green(std::forward<Arg>(arg)))
{
return m_a.green(std::forward<Arg>(arg)) + m_b.green(std::forward<Arg>(arg));
}
template <typename Arg>
auto impl(Arg && arg, blue_tag) -> decltype(m_a.blue(std::forward<Arg>(arg)) + m_b.blue(std::forward<Arg>(arg)))
{
return m_a.blue(std::forward<Arg>(arg)) + m_b.blue(std::forward<Arg>(arg));
}
A m_a;
B m_b;
};
另一个版本可以使用辅助结构:
template <typename A, typename B, typename Arg, typename Category = typename category<Arg>::type>
struct Foo_Returns;
template <typename A, typename B, typename Arg>
struct Foo_Returns<A, B, Arg, green_tag>
{
typedef decltype(std::declval<A>().green(std::declval<Arg>()) +
std::declval<B>().green(std::declval<Arg>())) type;
type operator()(A & a, B & b, Arg && arg) const
{
return a.green(std::forward<Arg>(arg)) + b.green(std::forward<Arg>(arg));
}
};
template <typename A, typename B, typename Arg>
struct Foo_Returns<A, B, Arg, blue_tag>
{
typedef decltype(std::declval<A>().blue(std::declval<Arg>()) +
std::declval<B>().blue(std::declval<Arg>())) type;
type operator()(A & a, B & b, Arg && arg) const
{
return a.blue(std::forward<Arg>(arg)) + b.blue(std::forward<Arg>(arg));
}
};
template <typename A, typename B>
class Foo
{
public:
Foo(A a, B b) : m_a(std::move(a)), m_b(std::move(b)) { }
template <typename Arg>
typename Foo_Returns<A, B, Arg>::type
operator()(Arg && arg)
{
return Foo_Returns<A, B, Arg>()(m_a, m_b, std::forward<Arg>(arg));
}
private:
A m_a;
B m_b;
};
有更好的版本吗?还有哪些可能的方法?