我一直在解决下面的问题,但我得到了错误的答案。我的逻辑有什么问题?
完美数是一个数,其真因数之和正好等于该数。例如,28 的适当因数之和为 1 + 2 + 4 + 7 + 14 = 28,这意味着 28 是一个完美数。
一个数 n 如果其真因数之和小于 n 则称为不足数,如果该数之和超过 n 则称为丰富数。
由于 12 是最小的丰度数,1 + 2 + 3 + 4 + 6 = 16,所以可以写成两个丰度数之和的最小数是 24。通过数学分析可以证明,所有大于28123 可以写成两个丰富数之和。但是,即使已知不能表示为两个丰富数之和的最大数小于此上限,也无法通过分析进一步降低此上限。
找出所有不能写成两个丰富数之和的正整数之和。
这是我的代码:
public class EulerProblem23 {
public static void main(String[] args) {
//First, I create an array containing all the numbers ranging from 1 to 28123.
int[] tall = new int[28123];
int x = 0;
for (int j = 1;j<=28123;j++){
tall[x] = j;
x++;
}
//Then, give all the numbers that can be written as the sum of two abundant numbers
//the value 0.
int forrige = 0;
for (int i = 1;i<=28123;i++){
if (isAbundant(i)){
if (2 * i <= 28123){
tall[i - 1] = 0;
}
if (forrige + i <= 28123){
tall[i - 1] = 0;
}
}
}
//All that's left should be summing all the numbers in the array.
long sum = 0;
for (int y = 0;y<28123;y++){
sum += tall[y];
}
System.out.println(sum);
}
public static boolean isAbundant(int n){
int sumAvDivisorer = 0;
for (int i = 1;i<n;i++){
if (n % i == 0){
sumAvDivisorer += i;
}
}
if (sumAvDivisorer > n){
return true;
}
else {
return false;
}
}
}
我这里的逻辑有问题吗?不是所有可以定义为两个丰富数之和的整数都变成0吗?