0

我正在尝试编写一个 Hadoop map/reduce 类,该类读取包含演员列表和他们播放过的电影(每行一部电影)的文本文件,并返回每个演员参与的电影数量。

最后,我希望结果按电影数量排序(升序或降序都可以)。但是,我的代码似乎按电影标题中的字符数对结果进行了排序。我已经尝试了我能想到的一切,包括反转输出(文本、IntWritable 到 IntWritable、文本)并使用不同的比较器,但我无法让它按电影计数对结果进行排序。

我敢肯定这是非常简单的事情,但我一生都无法弄清楚。任何建议将不胜感激。

数据文件的摘录:

Chan, Jackie (I)    The Forbidden Kingdom   2008
Chan, Jackie (I)    Kung Fu Panda 2 2011
Chan, Jackie (I)    Shanghai Noon   2000
Chan, Jackie (I)    Pik lik for 1995
Chan, Jackie (I)    The Karate Kid  2010
Chan, Jackie (I)    Shanghai Knights    2003
Chan, Jackie (I)    Around the World in 80 Days 2004
Chan, Jackie (I)    Rush Hour   1998
Chan, Jackie (I)    The Tuxedo  2002
Chan, Jackie (I)    Kung Fu Panda   2008
Chan, Jackie (I)    Rush Hour 2 2001
Chan, Jackie (I)    Rush Hour 3 2007
Davi, Robert    Licence to Kill 1989
Davi, Robert    Die Hard    1988
Davi, Robert    The Hot Chick   2002
Davi, Robert    The Goonies 1985

我的代码如下:

// MovieCountByActor.java

package ucsc.hadoop.homework2;

import java.io.IOException;
import java.nio.ByteBuffer;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
// import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import ucsc.hadoop.util.ConfigurationUtil;

public class MovieCountByActor extends Configured implements Tool {
private static final Log LOG = LogFactory.getLog(MovieCountByActor.class);

    public int run(String[] args) throws Exception {
        // Configuration conf = getConf();
        JobConf conf = new JobConf(getConf(), MovieCountByActor.class);
        conf.setOutputKeyComparatorClass(CountSort.class);
        conf.setOutputValueGroupingComparator(CountSort.class);

        if (args.length != 2) {
            System.err.println("Usage: moviecountbyactor <in> <out>");
            System.exit(2);
        }

        ConfigurationUtil.dumpConfigurations(conf, System.out);

        LOG.info("input: " + args[0] + " output: " + args[1]);

        Job job = new Job(conf, "movie count");
        job.setJarByClass(MovieCountByActor.class);
        job.setMapperClass(MovieTokenizerMapper.class);
        job.setReducerClass(MovieCountReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        job.setSortComparatorClass(CountSort.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        boolean result = job.waitForCompletion(true);
        return (result) ? 0 : 1;
    }

    public static void main(String[] args) throws Exception {
        int exitCode = ToolRunner.run(new MovieCountByActor(), args);
        System.exit(exitCode);
    }

    public static class MovieTokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
        private final static IntWritable ONE = new IntWritable(1);
        private final static Text ACTOR = new Text();

        @Override
        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            String[] tokens = value.toString().split("\\t");

            String actor = "";
            if (tokens.length == 3) {
                actor = tokens[0];
                ACTOR.set(actor);
                context.write(ACTOR, ONE);
            }
        }
    }

    public static class MovieCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();

        public void reduce(Text actor, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

            int movieCountPerActor = 0;
            for (IntWritable count : values) {
                movieCountPerActor += count.get();
            }
            result.set(movieCountPerActor);
            context.write(actor, result);
        }
    }

    public static class CountSort extends WritableComparator {
        protected CountSort() {
            super (IntWritable.class);
        }

        @Override
        public int compare(byte[] b1, int j1, int k1, byte[] b2, int j2, int k2) {
            Integer a = ByteBuffer.wrap(b1, j1, k1).getInt();
            Integer b = ByteBuffer.wrap(b2, j2, k2).getInt();
            return a.compareTo(b) * -1;
        }
    }

}
4

2 回答 2

1

我认为您对job.setSortComparatorClass(CountSort.class);正在做的事情感到困惑-这是您的 Key 值在减少之前的比较器。我认为您只是在检查序列化 Text 对象(演员名称)的 Int 部分,这解释了为什么您会看到演员姓名长度的输出(我想如果您有两个演员,您会看到意外的输出碰巧散列到同一个reduce实例的相同名称长度。

要按电影数量对输出进行排序,您将需要执行另一个 M/R 作业来获取第一个作业的输出(按演员计算电影),然后使用映射器来切换键/值(所以输出键是计数,值是演员名称)。使用单个减速器,您将按电影计数的升序获得演员。

于 2013-03-17T19:51:33.663 回答
-2

默认情况下 Map Reduce 对 reducer 输出的键进行排序,因此在计算特定演员的电影后可以做什么,您可以将 reducer 的输出键设置为电影计数,将值设置为演员名称。

如下:

public static class MovieCountReducer extends Reducer<Text, IntWritable, IntWritable,Text> {
        private IntWritable result = new IntWritable();

        public void reduce(Text actor, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

            int movieCountPerActor = 0;
            for (IntWritable count : values) {
                movieCountPerActor += count.get();
            }
            result.set(movieCountPerActor);
            context.write(result, actor);
        }
}

此外,请在作业配置中进行以下更改:

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(Text.class);
于 2013-03-18T10:03:21.820 回答