226

例如,给定列表['one', 'two', 'one'],算法应该返回True,而给定['one', 'two', 'three']它应该返回False

4

15 回答 15

467

如果所有值都是可散列的,则用于set()删除重复项:

>>> your_list = ['one', 'two', 'one']
>>> len(your_list) != len(set(your_list))
True
于 2009-10-09T04:38:45.617 回答
65

仅推荐用于名单:

any(thelist.count(x) > 1 for x in thelist)

不要长列表上使用——它所花费的时间与列表中项目数的平方成正比!

对于具有可散列项(字符串、数字等)的较长列表:

def anydup(thelist):
  seen = set()
  for x in thelist:
    if x in seen: return True
    seen.add(x)
  return False

如果您的项目不可散列(子列表、字典等),它会变得更加毛茸茸,但如果它们至少具有可比性,仍有可能获得 O(N logN)。但是您需要知道或测试项目的特征(可散列与否,可比较或不可比较)以获得最佳性能 - O(N) 用于可散列,O(N log N) 用于不可散列可比较,否则它下降到 O(N 平方),对此无能为力:-(。

于 2009-10-09T04:36:37.100 回答
18

我认为比较这里介绍的不同解决方案的时间会很有用。为此,我使用了自己的库simple_benchmark

在此处输入图像描述

因此,对于这种情况,Denis Otkidach的解决方案确实是最快的。

一些方法还表现出更陡峭的曲线,这些方法与元素数量成二次方(Alex Martellis 第一个解决方案、wjandrea 和 Xavier Decorets 解决方案)。另外值得一提的是,Keiku 的 pandas 解决方案有一个非常大的常数因子。但是对于更大的列表,它几乎可以赶上其他解决方案。

并且如果副本位于第一个位置。这对于查看哪些解决方案正在短路很有用:

在此处输入图像描述

这里有几种方法不会短路:Kaiku、Frank、Xavier_Decoret(第一个解决方案)、Turn、Alex Martelli(第一个解决方案)和 Denis Otkidach 提出的方法(在不重复的情况下最快)。

我在这里包含了我自己的库中的一个函数:iteration_utilities.all_distinct它可以在无重复情况下与最快的解决方案竞争,并在开始重复的情况下以恒定时间执行(尽管不是最快的)。

基准测试的代码:

from collections import Counter
from functools import reduce

import pandas as pd
from simple_benchmark import BenchmarkBuilder
from iteration_utilities import all_distinct

b = BenchmarkBuilder()

@b.add_function()
def Keiku(l):
    return pd.Series(l).duplicated().sum() > 0

@b.add_function()
def Frank(num_list):
    unique = []
    dupes = []
    for i in num_list:
        if i not in unique:
            unique.append(i)
        else:
            dupes.append(i)
    if len(dupes) != 0:
        return False
    else:
        return True

@b.add_function()
def wjandrea(iterable):
    seen = []
    for x in iterable:
        if x in seen:
            return True
        seen.append(x)
    return False

@b.add_function()
def user(iterable):
    clean_elements_set = set()
    clean_elements_set_add = clean_elements_set.add

    for possible_duplicate_element in iterable:

        if possible_duplicate_element in clean_elements_set:
            return True

        else:
            clean_elements_set_add( possible_duplicate_element )

    return False

@b.add_function()
def Turn(l):
    return Counter(l).most_common()[0][1] > 1

def getDupes(l):
    seen = set()
    seen_add = seen.add
    for x in l:
        if x in seen or seen_add(x):
            yield x

@b.add_function()          
def F1Rumors(l):
    try:
        if next(getDupes(l)): return True    # Found a dupe
    except StopIteration:
        pass
    return False

def decompose(a_list):
    return reduce(
        lambda u, o : (u[0].union([o]), u[1].union(u[0].intersection([o]))),
        a_list,
        (set(), set()))

@b.add_function()
def Xavier_Decoret_1(l):
    return not decompose(l)[1]

@b.add_function()
def Xavier_Decoret_2(l):
    try:
        def func(s, o):
            if o in s:
                raise Exception
            return s.union([o])
        reduce(func, l, set())
        return True
    except:
        return False

@b.add_function()
def pyrospade(xs):
    s = set()
    return any(x in s or s.add(x) for x in xs)

@b.add_function()
def Alex_Martelli_1(thelist):
    return any(thelist.count(x) > 1 for x in thelist)

@b.add_function()
def Alex_Martelli_2(thelist):
    seen = set()
    for x in thelist:
        if x in seen: return True
        seen.add(x)
    return False

@b.add_function()
def Denis_Otkidach(your_list):
    return len(your_list) != len(set(your_list))

@b.add_function()
def MSeifert04(l):
    return not all_distinct(l)

对于论点:


# No duplicate run
@b.add_arguments('list size')
def arguments():
    for exp in range(2, 14):
        size = 2**exp
        yield size, list(range(size))

# Duplicate at beginning run
@b.add_arguments('list size')
def arguments():
    for exp in range(2, 14):
        size = 2**exp
        yield size, [0, *list(range(size)]

# Running and plotting
r = b.run()
r.plot()
于 2019-06-25T20:34:03.540 回答
14

这是旧的,但这里的答案让我得到了一个稍微不同的解决方案。如果您愿意滥用理解,则可以通过这种方式短路。

xs = [1, 2, 1]
s = set()
any(x in s or s.add(x) for x in xs)
# You can use a similar approach to actually retrieve the duplicates.
s = set()
duplicates = set(x for x in xs if x in s or s.add(x))
于 2013-08-29T16:03:06.757 回答
9

如果你喜欢函数式编程风格,这里有一个有用的函数,使用doctest进行自我记录和测试的代码。

def decompose(a_list):
    """Turns a list into a set of all elements and a set of duplicated elements.

    Returns a pair of sets. The first one contains elements
    that are found at least once in the list. The second one
    contains elements that appear more than once.

    >>> decompose([1,2,3,5,3,2,6])
    (set([1, 2, 3, 5, 6]), set([2, 3]))
    """
    return reduce(
        lambda (u, d), o : (u.union([o]), d.union(u.intersection([o]))),
        a_list,
        (set(), set()))

if __name__ == "__main__":
    import doctest
    doctest.testmod()

从那里您可以通过检查返回对的第二个元素是否为空来测试唯一性:

def is_set(l):
    """Test if there is no duplicate element in l.

    >>> is_set([1,2,3])
    True
    >>> is_set([1,2,1])
    False
    >>> is_set([])
    True
    """
    return not decompose(l)[1]

请注意,这效率不高,因为您正在显式构建分解。但是沿着使用 reduce 的思路,你可以找到等效的方法(但效率稍低)来回答 5:

def is_set(l):
    try:
        def func(s, o):
            if o in s:
                raise Exception
            return s.union([o])
        reduce(func, l, set())
        return True
    except:
        return False
于 2011-06-06T10:44:28.910 回答
5

我最近回答了一个相关问题,使用生成器在列表中建立所有重复项。它的优点是如果只是用来确定“是否有重复”,那么您只需获取第一项,其余的可以忽略,这是最终的捷径。

这是一个有趣的基于集合的方法,我直接从moooeeeep改编而来:

def getDupes(l):
    seen = set()
    seen_add = seen.add
    for x in l:
        if x in seen or seen_add(x):
            yield x

因此,完整的受骗列表将是list(getDupes(etc)). 为了简单地测试“如果”有一个骗子,它应该被包装如下:

def hasDupes(l):
    try:
        if getDupes(l).next(): return True    # Found a dupe
    except StopIteration:
        pass
    return False

这可以很好地扩展并在列表中的任何地方提供一致的操作时间——我测试了最多 1m 个条目的列表。如果您对数据有所了解,特别是上半场可能会出现骗子,或者其他让您扭曲要求的事情,例如需要获取实际的骗子,那么有几个真正替代的骗子定位器那可能会跑赢。我推荐的两个是...

简单的基于 dict 的方法,非常易读:

def getDupes(c):
    d = {}
    for i in c:
        if i in d:
            if d[i]:
                yield i
                d[i] = False
        else:
            d[i] = True

在排序列表上利用 itertools(本质上是一个 ifilter/izip/tee),如果你得到所有的欺骗,虽然没有那么快得到第一个,但效率很高:

def getDupes(c):
    a, b = itertools.tee(sorted(c))
    next(b, None)
    r = None
    for k, g in itertools.ifilter(lambda x: x[0]==x[1], itertools.izip(a, b)):
        if k != r:
            yield k
            r = k

这些是我为完整欺骗列表尝试的方法中表现最好的方法,第一个欺骗发生在从开始到中间的 1m 元素列表中的任何位置。令人惊讶的是,排序步骤增加的开销如此之小。您的里程可能会有所不同,但这是我的具体计时结果:

Finding FIRST duplicate, single dupe places "n" elements in to 1m element array

Test set len change :        50 -  . . . . .  -- 0.002
Test in dict        :        50 -  . . . . .  -- 0.002
Test in set         :        50 -  . . . . .  -- 0.002
Test sort/adjacent  :        50 -  . . . . .  -- 0.023
Test sort/groupby   :        50 -  . . . . .  -- 0.026
Test sort/zip       :        50 -  . . . . .  -- 1.102
Test sort/izip      :        50 -  . . . . .  -- 0.035
Test sort/tee/izip  :        50 -  . . . . .  -- 0.024
Test moooeeeep      :        50 -  . . . . .  -- 0.001 *
Test iter*/sorted   :        50 -  . . . . .  -- 0.027

Test set len change :      5000 -  . . . . .  -- 0.017
Test in dict        :      5000 -  . . . . .  -- 0.003 *
Test in set         :      5000 -  . . . . .  -- 0.004
Test sort/adjacent  :      5000 -  . . . . .  -- 0.031
Test sort/groupby   :      5000 -  . . . . .  -- 0.035
Test sort/zip       :      5000 -  . . . . .  -- 1.080
Test sort/izip      :      5000 -  . . . . .  -- 0.043
Test sort/tee/izip  :      5000 -  . . . . .  -- 0.031
Test moooeeeep      :      5000 -  . . . . .  -- 0.003 *
Test iter*/sorted   :      5000 -  . . . . .  -- 0.031

Test set len change :     50000 -  . . . . .  -- 0.035
Test in dict        :     50000 -  . . . . .  -- 0.023
Test in set         :     50000 -  . . . . .  -- 0.023
Test sort/adjacent  :     50000 -  . . . . .  -- 0.036
Test sort/groupby   :     50000 -  . . . . .  -- 0.134
Test sort/zip       :     50000 -  . . . . .  -- 1.121
Test sort/izip      :     50000 -  . . . . .  -- 0.054
Test sort/tee/izip  :     50000 -  . . . . .  -- 0.045
Test moooeeeep      :     50000 -  . . . . .  -- 0.019 *
Test iter*/sorted   :     50000 -  . . . . .  -- 0.055

Test set len change :    500000 -  . . . . .  -- 0.249
Test in dict        :    500000 -  . . . . .  -- 0.145
Test in set         :    500000 -  . . . . .  -- 0.165
Test sort/adjacent  :    500000 -  . . . . .  -- 0.139
Test sort/groupby   :    500000 -  . . . . .  -- 1.138
Test sort/zip       :    500000 -  . . . . .  -- 1.159
Test sort/izip      :    500000 -  . . . . .  -- 0.126
Test sort/tee/izip  :    500000 -  . . . . .  -- 0.120 *
Test moooeeeep      :    500000 -  . . . . .  -- 0.131
Test iter*/sorted   :    500000 -  . . . . .  -- 0.157
于 2015-07-22T16:54:59.407 回答
3

另一种简洁的方法是使用Counter

要确定原始列表中是否有任何重复项:

from collections import Counter

def has_dupes(l):
    # second element of the tuple has number of repetitions
    return Counter(l).most_common()[0][1] > 1

或获取具有重复项的项目列表:

def get_dupes(l):
    return [k for k, v in Counter(l).items() if v > 1]
于 2018-02-05T03:56:05.570 回答
3
my_list = ['one', 'two', 'one']

duplicates = []

for value in my_list:
  if my_list.count(value) > 1:
    if value not in duplicates:
      duplicates.append(value)

print(duplicates) //["one"]
于 2019-10-09T11:05:55.570 回答
2

我发现这样做的性能最好,因为它在第一次复制时会短路操作,然后这个算法的时间和空间复杂度为 O(n),其中 n 是列表的长度:

def has_duplicated_elements(iterable):
    """ Given an `iterable`, return True if there are duplicated entries. """
    clean_elements_set = set()
    clean_elements_set_add = clean_elements_set.add

    for possible_duplicate_element in iterable:

        if possible_duplicate_element in clean_elements_set:
            return True

        else:
            clean_elements_set_add( possible_duplicate_element )

    return False
于 2018-07-09T00:25:40.140 回答
1

如果列表包含不可散列的项目,您可以使用Alex Martelli 的解决方案,但使用列表而不是集合,尽管对于较大的输入它会更慢:O(N^2)。

def has_duplicates(iterable):
    seen = []
    for x in iterable:
        if x in seen:
            return True
        seen.append(x)
    return False
于 2019-06-23T01:44:54.183 回答
0

我真的不知道 set 在幕后做了什么,所以我只想保持简单。

def dupes(num_list):
    unique = []
    dupes = []
    for i in num_list:
        if i not in unique:
            unique.append(i)
        else:
            dupes.append(i)
    if len(dupes) != 0:
        return False
    else:
        return True
于 2019-02-05T04:57:27.143 回答
0

一个更简单的解决方案如下。只需使用 pandas.duplicated()方法检查 True/False,然后求和。另请参阅 pandas.Series.duplicated — pandas 0.24.1 文档

import pandas as pd

def has_duplicated(l):
    return pd.Series(l).duplicated().sum() > 0

print(has_duplicated(['one', 'two', 'one']))
# True
print(has_duplicated(['one', 'two', 'three']))
# False
于 2019-02-25T08:18:53.713 回答
0

为了简单起见,我使用了 pyrospade 的方法,并在由不区分大小写的 Windows 注册表组成的简短列表中对其进行了稍微修改。

如果将原始 PATH 值字符串拆分为单独的路径,则可以使用以下方法删除所有“空”路径(空或仅限空格的字符串):

PATH_nonulls = [s for s in PATH if s.strip()]

def HasDupes(aseq) :
    s = set()
    return any(((x.lower() in s) or s.add(x.lower())) for x in aseq)

def GetDupes(aseq) :
    s = set()
    return set(x for x in aseq if ((x.lower() in s) or s.add(x.lower())))

def DelDupes(aseq) :
    seen = set()
    return [x for x in aseq if (x.lower() not in seen) and (not seen.add(x.lower()))]

出于测试目的,原始 PATH 既有“空”条目也有重复项:

[list]  Root paths in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment:PATH[list]  Root paths in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment
  1  C:\Python37\
  2
  3
  4  C:\Python37\Scripts\
  5  c:\python37\
  6  C:\Program Files\ImageMagick-7.0.8-Q8
  7  C:\Program Files (x86)\poppler\bin
  8  D:\DATA\Sounds
  9  C:\Program Files (x86)\GnuWin32\bin
 10  C:\Program Files (x86)\Intel\iCLS Client\
 11  C:\Program Files\Intel\iCLS Client\
 12  D:\DATA\CCMD\FF
 13  D:\DATA\CCMD
 14  D:\DATA\UTIL
 15  C:\
 16  D:\DATA\UHELP
 17  %SystemRoot%\system32
 18
 19
 20  D:\DATA\CCMD\FF%SystemRoot%
 21  D:\DATA\Sounds
 22  %SystemRoot%\System32\Wbem
 23  D:\DATA\CCMD\FF
 24
 25
 26  c:\
 27  %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\
 28

空路径已被删除,但仍有重复项,例如 (1, 3) 和 (13, 20):

    [list]  Null paths removed from HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment:PATH
  1  C:\Python37\
  2  C:\Python37\Scripts\
  3  c:\python37\
  4  C:\Program Files\ImageMagick-7.0.8-Q8
  5  C:\Program Files (x86)\poppler\bin
  6  D:\DATA\Sounds
  7  C:\Program Files (x86)\GnuWin32\bin
  8  C:\Program Files (x86)\Intel\iCLS Client\
  9  C:\Program Files\Intel\iCLS Client\
 10  D:\DATA\CCMD\FF
 11  D:\DATA\CCMD
 12  D:\DATA\UTIL
 13  C:\
 14  D:\DATA\UHELP
 15  %SystemRoot%\system32
 16  D:\DATA\CCMD\FF%SystemRoot%
 17  D:\DATA\Sounds
 18  %SystemRoot%\System32\Wbem
 19  D:\DATA\CCMD\FF
 20  c:\
 21  %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\

最后,骗子已被删除:

[list]  Massaged path list from in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment:PATH
  1  C:\Python37\
  2  C:\Python37\Scripts\
  3  C:\Program Files\ImageMagick-7.0.8-Q8
  4  C:\Program Files (x86)\poppler\bin
  5  D:\DATA\Sounds
  6  C:\Program Files (x86)\GnuWin32\bin
  7  C:\Program Files (x86)\Intel\iCLS Client\
  8  C:\Program Files\Intel\iCLS Client\
  9  D:\DATA\CCMD\FF
 10  D:\DATA\CCMD
 11  D:\DATA\UTIL
 12  C:\
 13  D:\DATA\UHELP
 14  %SystemRoot%\system32
 15  D:\DATA\CCMD\FF%SystemRoot%
 16  %SystemRoot%\System32\Wbem
 17  %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\
于 2019-06-27T03:09:08.403 回答
0
def check_duplicates(my_list):
    seen = {}
    for item in my_list:
        if seen.get(item):
            return True
        seen[item] = True
    return False
于 2020-03-11T15:00:44.247 回答
0

另一种解决方案是使用slicing,它也适用于字符串和其他可枚举的东西。

def has_duplicates(x):
    for idx, item in enumerate(x):
        if item in x[(idx + 1):]:
            return True
    return False


>>> has_duplicates(["a", "b", "c"])
False
>>> has_duplicates(["a", "b", "b", "c"])
True
>>> has_duplicates("abc")
False
>>> has_duplicates("abbc")
True
于 2022-02-09T20:34:37.850 回答