48

我正在使用 I/O 非阻塞 python 服务器 Tornado。我有一类GET请求可能需要很长时间才能完成(想想在 5-10 秒的范围内)。问题是 Tornado 会阻止这些请求,因此后续的快速请求会被阻止,直到慢速请求完成。

我查看了:https ://github.com/facebook/tornado/wiki/Threading-and-concurrency并得出结论,我想要#3(其他进程)和#4(其他线程)的某种组合。#4 本身就有问题,当有另一个线程在执行“heavy_lifting”时,我无法将可靠的控制权返回给 ioloop。(我认为这是由于 GIL 以及 heavy_lifting 任务具有高 CPU 负载并不断将控制权从主 ioloop 中拉出的事实,但这是一个猜测)。

因此,我一直在设计如何解决这个问题的原型,方法是在单独的进程中在这些缓慢的请求中执行“繁重的”任务GET,然后在进程完成时将回调放回 Tornado ioloop 以完成请求。这释放了 ioloop 来处理其他请求。

我创建了一个简单的示例来演示一个可能的解决方案,但我很想从社区中获得反馈。

我的问题有两个:如何简化当前的方法?它可能存在哪些陷阱?

该方法

  1. 利用 Tornado 的内置asynchronous装饰器,它允许请求保持打开状态并让 ioloop 继续。

  2. multiprocessing使用 python 的模块为“繁重”任务生成一个单独的进程。我首先尝试使用该threading模块,但无法将任何可靠的控制权交还给 ioloop。看来这mutliprocessing也将利用多核。

  3. 使用模块在主 ioloop 进程中启动一个“观察者”线程,该threading模块的工作是在完成multiprocessing.Queue时观察“繁重”任务的结果。这是必要的,因为我需要一种方法来知道 heavy_lifting 任务已经完成,同时仍然能够通知 ioloop 这个请求现在已经完成。

  4. 确保“观察者”线程经常通过调用将控制权交给主 ioloop 循环,time.sleep(0)以便继续轻松处理其他请求。

  5. 当队列中有结果时,然后从“观察者”线程添加一个回调,使用tornado.ioloop.IOLoop.instance().add_callback()它被记录为从其他线程调用 ioloop 实例的唯一安全方法。

  6. 请务必finish()在回调中调用以完成请求并提交回复。

下面是一些显示这种方法的示例代码。 multi_tornado.py是实现上述大纲的服务器,call_multi.py是一个示例脚本,它以两种不同的方式调用服务器来测试服务器。两个测试都使用 3 个慢速GET请求和 20 个快速GET请求调用服务器。结果显示在打开和未打开线程的情况下运行。

在“无线程”运行它的情况下,3 个慢速请求块(每个需要一秒钟多一点的时间才能完成)。20 个快速请求中有几个挤在 ioloop 中的一些慢速请求之间(不完全确定这是如何发生的 - 但可能是我在同一台机器上同时运行服务器和客户端测试脚本的工件)。这里的要点是所有快速请求都在不同程度上受到了阻碍。

在启用线程运行的情况下,20 个快速请求首先立即完成,三个慢速请求在之后大约同时完成,因为它们每个都并行运行。这是期望的行为。三个慢速请求并行完成需要 2.5 秒 - 而在非线程情况下,三个慢速请求总共需要大约 3.5 秒。所以总体上大约有 35% 的加速(我假设是由于多核共享)。但更重要的是 - 快速请求立即以慢速请求的 leu 处理。

我在多线程编程方面没有很多经验 - 所以虽然这似乎在这里有效,但我很想学习:

有没有更简单的方法来实现这一点?这种方法中可能潜伏着什么怪物?

(注意:未来的权衡可能是只运行更多的 Tornado 实例,使用像 nginx 这样的反向代理进行负载平衡。无论我将使用负载平衡器运行多个实例 - 但我担心只是在这个问题上抛出硬件因为在阻塞方面,硬件似乎与问题直接相关。)

示例代码

multi_tornado.py(示例服务器):

import time
import threading
import multiprocessing
import math

from tornado.web import RequestHandler, Application, asynchronous
from tornado.ioloop import IOLoop


# run in some other process - put result in q
def heavy_lifting(q):
    t0 = time.time()
    for k in range(2000):
        math.factorial(k)

    t = time.time()
    q.put(t - t0)  # report time to compute in queue


class FastHandler(RequestHandler):
    def get(self):
        res = 'fast result ' + self.get_argument('id')
        print res
        self.write(res)
        self.flush()


class MultiThreadedHandler(RequestHandler):
    # Note:  This handler can be called with threaded = True or False
    def initialize(self, threaded=True):
        self._threaded = threaded
        self._q = multiprocessing.Queue()

    def start_process(self, worker, callback):
        # method to start process and watcher thread
        self._callback = callback

        if self._threaded:
            # launch process
            multiprocessing.Process(target=worker, args=(self._q,)).start()

            # start watching for process to finish
            threading.Thread(target=self._watcher).start()

        else:
            # threaded = False just call directly and block
            worker(self._q)
            self._watcher()

    def _watcher(self):
        # watches the queue for process result
        while self._q.empty():
            time.sleep(0)  # relinquish control if not ready

        # put callback back into the ioloop so we can finish request
        response = self._q.get(False)
        IOLoop.instance().add_callback(lambda: self._callback(response))


class SlowHandler(MultiThreadedHandler):
    @asynchronous
    def get(self):
        # start a thread to watch for
        self.start_process(heavy_lifting, self._on_response)

    def _on_response(self, delta):
        _id = self.get_argument('id')
        res = 'slow result {} <--- {:0.3f} s'.format(_id, delta)
        print res
        self.write(res)
        self.flush()
        self.finish()   # be sure to finish request


application = Application([
    (r"/fast", FastHandler),
    (r"/slow", SlowHandler, dict(threaded=False)),
    (r"/slow_threaded", SlowHandler, dict(threaded=True)),
])


if __name__ == "__main__":
    application.listen(8888)
    IOLoop.instance().start()

call_multi.py(客户测试员):

import sys
from tornado.ioloop import IOLoop
from tornado import httpclient


def run(slow):
    def show_response(res):
        print res.body

    # make 3 "slow" requests on server
    requests = []
    for k in xrange(3):
        uri = 'http://localhost:8888/{}?id={}'
        requests.append(uri.format(slow, str(k + 1)))

    # followed by 20 "fast" requests
    for k in xrange(20):
        uri = 'http://localhost:8888/fast?id={}'
        requests.append(uri.format(k + 1))

    # show results as they return
    http_client = httpclient.AsyncHTTPClient()

    print 'Scheduling Get Requests:'
    print '------------------------'
    for req in requests:
        print req
        http_client.fetch(req, show_response)

    # execute requests on server
    print '\nStart sending requests....'
    IOLoop.instance().start()

if __name__ == '__main__':
    scenario = sys.argv[1]

    if scenario == 'slow' or scenario == 'slow_threaded':
        run(scenario)

试验结果

通过运行python call_multi.py slow (阻塞行为):

Scheduling Get Requests:
------------------------
http://localhost:8888/slow?id=1
http://localhost:8888/slow?id=2
http://localhost:8888/slow?id=3
http://localhost:8888/fast?id=1
http://localhost:8888/fast?id=2
http://localhost:8888/fast?id=3
http://localhost:8888/fast?id=4
http://localhost:8888/fast?id=5
http://localhost:8888/fast?id=6
http://localhost:8888/fast?id=7
http://localhost:8888/fast?id=8
http://localhost:8888/fast?id=9
http://localhost:8888/fast?id=10
http://localhost:8888/fast?id=11
http://localhost:8888/fast?id=12
http://localhost:8888/fast?id=13
http://localhost:8888/fast?id=14
http://localhost:8888/fast?id=15
http://localhost:8888/fast?id=16
http://localhost:8888/fast?id=17
http://localhost:8888/fast?id=18
http://localhost:8888/fast?id=19
http://localhost:8888/fast?id=20

Start sending requests....
slow result 1 <--- 1.338 s
fast result 1
fast result 2
fast result 3
fast result 4
fast result 5
fast result 6
fast result 7
slow result 2 <--- 1.169 s
slow result 3 <--- 1.130 s
fast result 8
fast result 9
fast result 10
fast result 11
fast result 13
fast result 12
fast result 14
fast result 15
fast result 16
fast result 18
fast result 17
fast result 19
fast result 20

通过运行python call_multi.py slow_threaded (所需的行为):

Scheduling Get Requests:
------------------------
http://localhost:8888/slow_threaded?id=1
http://localhost:8888/slow_threaded?id=2
http://localhost:8888/slow_threaded?id=3
http://localhost:8888/fast?id=1
http://localhost:8888/fast?id=2
http://localhost:8888/fast?id=3
http://localhost:8888/fast?id=4
http://localhost:8888/fast?id=5
http://localhost:8888/fast?id=6
http://localhost:8888/fast?id=7
http://localhost:8888/fast?id=8
http://localhost:8888/fast?id=9
http://localhost:8888/fast?id=10
http://localhost:8888/fast?id=11
http://localhost:8888/fast?id=12
http://localhost:8888/fast?id=13
http://localhost:8888/fast?id=14
http://localhost:8888/fast?id=15
http://localhost:8888/fast?id=16
http://localhost:8888/fast?id=17
http://localhost:8888/fast?id=18
http://localhost:8888/fast?id=19
http://localhost:8888/fast?id=20

Start sending requests....
fast result 1
fast result 2
fast result 3
fast result 4
fast result 5
fast result 6
fast result 7
fast result 8
fast result 9
fast result 10
fast result 11
fast result 12
fast result 13
fast result 14
fast result 15
fast result 19
fast result 20
fast result 17
fast result 16
fast result 18
slow result 2 <--- 2.485 s
slow result 3 <--- 2.491 s
slow result 1 <--- 2.517 s
4

3 回答 3

32

如果你愿意使用concurrent.futures.ProcessPoolExecutor而不是multiprocessing,这其实很简单。Tornado 的 ioloop 已经支持 concurrent.futures.Future,因此它们开箱即用可以很好地配合使用。concurrent.futures包含在 Python 3.2+ 中,并已向后移植到 Python 2.x

这是一个例子:

import time
from concurrent.futures import ProcessPoolExecutor
from tornado.ioloop import IOLoop
from tornado import gen

def f(a, b, c, blah=None):
    print "got %s %s %s and %s" % (a, b, c, blah)
    time.sleep(5)
    return "hey there"

@gen.coroutine
def test_it():
    pool = ProcessPoolExecutor(max_workers=1)
    fut = pool.submit(f, 1, 2, 3, blah="ok")  # This returns a concurrent.futures.Future
    print("running it asynchronously")
    ret = yield fut
    print("it returned %s" % ret)
    pool.shutdown()

IOLoop.instance().run_sync(test_it)

输出:

running it asynchronously
got 1 2 3 and ok
it returned hey there

ProcessPoolExecutor有一个比 更有限的 API multiprocessing.Pool,但如果你不需要更高级的功能multiprocessing.Pool,它是值得使用的,因为集成要简单得多。

于 2014-08-08T16:40:38.050 回答
16

multiprocessing.Pool可以集成到tornadoI/O循环中,但是有点乱。可以使用更清晰的集成concurrent.futures(有关详细信息,请参阅我的其他答案),但是如果您被困在 Python 2.x 上并且无法安装concurrent.futuresbackport,那么您可以严格使用以下方法来完成它multiprocessing

和方法都有一个可选参数multiprocessing.Pool.apply_async,这意味着它们都可以潜在地插入到. 所以在大多数情况下,在子进程中异步运行代码就这么简单:multiprocessing.Pool.map_asynccallbacktornado.gen.Task

import multiprocessing
import contextlib

from tornado import gen
from tornado.gen import Return
from tornado.ioloop import IOLoop
from functools import partial

def worker():
    print "async work here"

@gen.coroutine
def async_run(func, *args, **kwargs):
    result = yield gen.Task(pool.apply_async, func, args, kwargs)
    raise Return(result)

if __name__ == "__main__":
    pool = multiprocessing.Pool(multiprocessing.cpu_count())
    func = partial(async_run, worker)
    IOLoop().run_sync(func)

正如我所提到的,这在大多数情况下都很有效。但是如果worker()抛出异常,callback则永远不会被调用,这意味着gen.Task永远不会完成,并且您将永远挂起。现在,如果您知道您的工作永远不会引发异常(例如,因为您将整个事情包装在try/except中),您可以愉快地使用这种方法。但是,如果您想让异常从您的工作人员中逃脱,我发现的唯一解决方案是将一些多处理组件子类化,并且callback即使工作人员子进程引发异常也让它们调用:

from multiprocessing.pool import ApplyResult, Pool, RUN
import multiprocessing
class TornadoApplyResult(ApplyResult):
    def _set(self, i, obj):
        self._success, self._value = obj 
        if self._callback:
            self._callback(self._value)
        self._cond.acquire()
        try:
            self._ready = True
            self._cond.notify()
        finally:
            self._cond.release()
        del self._cache[self._job]

class TornadoPool(Pool):
    def apply_async(self, func, args=(), kwds={}, callback=None):
        ''' Asynchronous equivalent of `apply()` builtin

        This version will call `callback` even if an exception is
        raised by `func`.

        '''
        assert self._state == RUN
        result = TornadoApplyResult(self._cache, callback)
        self._taskqueue.put(([(result._job, None, func, args, kwds)], None))
        return result
 ...

 if __name__ == "__main__":
     pool = TornadoPool(multiprocessing.cpu_count())
     ...

通过这些更改,异常对象将被返回gen.Task,而不是gen.Task无限期地挂起。我还更新了我的async_run方法以在异常返回时重新引发异常,并进行了一些其他更改,以便为工作子进程中抛出的异常提供更好的回溯。这是完整的代码:

import multiprocessing
from multiprocessing.pool import Pool, ApplyResult, RUN
from functools import wraps

import tornado.web
from tornado.ioloop import IOLoop
from tornado.gen import Return
from tornado import gen

class WrapException(Exception):
    def __init__(self):
        exc_type, exc_value, exc_tb = sys.exc_info()
        self.exception = exc_value
        self.formatted = ''.join(traceback.format_exception(exc_type, exc_value, exc_tb))

    def __str__(self):
        return '\n%s\nOriginal traceback:\n%s' % (Exception.__str__(self), self.formatted)

class TornadoApplyResult(ApplyResult):
    def _set(self, i, obj):
        self._success, self._value = obj 
        if self._callback:
            self._callback(self._value)
        self._cond.acquire()
        try:
            self._ready = True
            self._cond.notify()
        finally:
            self._cond.release()
        del self._cache[self._job]   

class TornadoPool(Pool):
    def apply_async(self, func, args=(), kwds={}, callback=None):
        ''' Asynchronous equivalent of `apply()` builtin

        This version will call `callback` even if an exception is
        raised by `func`.

        '''
        assert self._state == RUN
        result = TornadoApplyResult(self._cache, callback)
        self._taskqueue.put(([(result._job, None, func, args, kwds)], None))
        return result

@gen.coroutine
def async_run(func, *args, **kwargs):
    """ Runs the given function in a subprocess.

    This wraps the given function in a gen.Task and runs it
    in a multiprocessing.Pool. It is meant to be used as a
    Tornado co-routine. Note that if func returns an Exception 
    (or an Exception sub-class), this function will raise the 
    Exception, rather than return it.

    """
    result = yield gen.Task(pool.apply_async, func, args, kwargs)
    if isinstance(result, Exception):
        raise result
    raise Return(result)

def handle_exceptions(func):
    """ Raise a WrapException so we get a more meaningful traceback"""
    @wraps(func)
    def inner(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception:
            raise WrapException()
    return inner

# Test worker functions
@handle_exceptions
def test2(x):
    raise Exception("eeee")

@handle_exceptions
def test(x):
    print x
    time.sleep(2)
    return "done"

class TestHandler(tornado.web.RequestHandler):
    @gen.coroutine
    def get(self):
        try:
            result = yield async_run(test, "inside get")
            self.write("%s\n" % result)
            result = yield async_run(test2, "hi2")
        except Exception as e:
            print("caught exception in get")
            self.write("Caught an exception: %s" % e)
        finally:
            self.finish()

app = tornado.web.Application([
    (r"/test", TestHandler),
])

if __name__ == "__main__":
    pool = TornadoPool(4)
    app.listen(8888)
    IOLoop.instance().start()

以下是它对客户端的行为方式:

dan@dan:~$ curl localhost:8888/test
done
Caught an exception: 

Original traceback:
Traceback (most recent call last):
  File "./mutli.py", line 123, in inner
    return func(*args, **kwargs)
  File "./mutli.py", line 131, in test2
    raise Exception("eeee")
Exception: eeee

如果我同时发送两个 curl 请求,我们可以看到它们在服务器端被异步处理:

dan@dan:~$ ./mutli.py 
inside get
inside get
caught exception inside get
caught exception inside get

编辑:

请注意,此代码在 Python 3 中变得更简单,因为它error_callback为所有异步multiprocessing.Pool方法引入了关键字参数。这使得与 Tornado 集成变得更加容易:

class TornadoPool(Pool):
    def apply_async(self, func, args=(), kwds={}, callback=None):
        ''' Asynchronous equivalent of `apply()` builtin

        This version will call `callback` even if an exception is
        raised by `func`.

        '''
        super().apply_async(func, args, kwds, callback=callback,
                            error_callback=callback)

@gen.coroutine
def async_run(func, *args, **kwargs):
    """ Runs the given function in a subprocess.

    This wraps the given function in a gen.Task and runs it
    in a multiprocessing.Pool. It is meant to be used as a
    Tornado co-routine. Note that if func returns an Exception
    (or an Exception sub-class), this function will raise the
    Exception, rather than return it.

    """
    result = yield gen.Task(pool.apply_async, func, args, kwargs)
    raise Return(result)

除了kwarg之外,我们在覆盖中需要做的apply_async就是使用关键字参数调用父级。无需覆盖.error_callbackcallbackApplyResult

我们可以通过在我们的 中使用 MetaClass 来获得更好的效果TornadoPool,以允许*_async直接调用它的方法,就好像它们是协程一样:

import time
from functools import wraps
from multiprocessing.pool import Pool

import tornado.web
from tornado import gen
from tornado.gen import Return
from tornado import stack_context
from tornado.ioloop import IOLoop
from tornado.concurrent import Future

def _argument_adapter(callback):
    def wrapper(*args, **kwargs):
        if kwargs or len(args) > 1:
            callback(Arguments(args, kwargs))
        elif args:
            callback(args[0])
        else:
            callback(None)
    return wrapper

def PoolTask(func, *args, **kwargs):
    """ Task function for use with multiprocessing.Pool methods.

    This is very similar to tornado.gen.Task, except it sets the
    error_callback kwarg in addition to the callback kwarg. This
    way exceptions raised in pool worker methods get raised in the
    parent when the Task is yielded from.

    """
    future = Future()
    def handle_exception(typ, value, tb):
        if future.done():
            return False
        future.set_exc_info((typ, value, tb))
        return True
    def set_result(result):
        if future.done():
            return
        if isinstance(result, Exception):
            future.set_exception(result)
        else:
            future.set_result(result)
    with stack_context.ExceptionStackContext(handle_exception):
        cb = _argument_adapter(set_result)
        func(*args, callback=cb, error_callback=cb)
    return future

def coro_runner(func):
    """ Wraps the given func in a PoolTask and returns it. """
    @wraps(func)
    def wrapper(*args, **kwargs):
        return PoolTask(func, *args, **kwargs)
    return wrapper

class MetaPool(type):
    """ Wrap all *_async methods in Pool with coro_runner. """
    def __new__(cls, clsname, bases, dct):
        pdct = bases[0].__dict__
        for attr in pdct:
            if attr.endswith("async") and not attr.startswith('_'):
                setattr(bases[0], attr, coro_runner(pdct[attr]))
        return super().__new__(cls, clsname, bases, dct)

class TornadoPool(Pool, metaclass=MetaPool):
    pass

# Test worker functions
def test2(x):
    print("hi2")
    raise Exception("eeee")

def test(x):
    print(x)
    time.sleep(2)
    return "done"

class TestHandler(tornado.web.RequestHandler):
    @gen.coroutine
    def get(self):
        try:
            result = yield pool.apply_async(test, ("inside get",))
            self.write("%s\n" % result)
            result = yield pool.apply_async(test2, ("hi2",))
            self.write("%s\n" % result)
        except Exception as e:
            print("caught exception in get")
            self.write("Caught an exception: %s" % e)
            raise
        finally:
            self.finish()

app = tornado.web.Application([
    (r"/test", TestHandler),
])

if __name__ == "__main__":
    pool = TornadoPool()
    app.listen(8888)
    IOLoop.instance().start()
于 2014-05-01T16:30:01.150 回答
1

如果您的获取请求花费了那么长时间,那么龙卷风是错误的框架。

我建议您使用 nginx 将快速到达的龙卷风和较慢的到达不同的服务器。

PeterBe 有一篇有趣的文章,他在其中运行多个 Tornado 服务器并将其中一个设置为“慢速服务器”以处理长时间运行的请求,请参阅:担心 io-blocking我会尝试这种方法。

于 2013-03-13T16:04:11.867 回答