如果只是这个文件,你甚至不需要将它作为 csv 读取。以下会做
# if you are reading just timestamps, you may want to read it as just one column
jd1 <- read.table("datetime.csv", header = TRUE, colClasses = c("character"))
jd1$timestamp <- as.POSIXct(jd1$Date.Time, format = "%Y%m%d,%H:%M")
head(jd1)
## Date.Time timestamp
## 1 20100101,0:00 2010-01-01 00:00:00
## 2 20100101,1:00 2010-01-01 01:00:00
## 3 20100101,2:00 2010-01-01 02:00:00
## 4 20100101,3:00 2010-01-01 03:00:00
## 5 20100101,4:00 2010-01-01 04:00:00
## 6 20100101,5:00 2010-01-01 05:00:00
# if you must read it as seperate columns as you may have other columns in your file
jd2 <- read.csv("datetime.csv", header = TRUE, colClasses = c("character", "character"))
jd2$timestamp <- as.POSIXct(paste(jd2$Date, jd2$Time, sep = " "), format = "%Y%m%d %H:%M")
head(jd2)
## Date Time timestamp
## 1 20100101 0:00 2010-01-01 00:00:00
## 2 20100101 1:00 2010-01-01 01:00:00
## 3 20100101 2:00 2010-01-01 02:00:00
## 4 20100101 3:00 2010-01-01 03:00:00
## 5 20100101 4:00 2010-01-01 04:00:00
## 6 20100101 5:00 2010-01-01 05:00:00
Arun 的评论促使我做一些基准测试。
jd2 <- read.csv("datetime.csv", header = TRUE, colClasses = c("character", "character"))
library(microbenchmark)
microbenchmark(as.POSIXct(paste(jd2$Date, jd2$Time, sep = " "), format = "%Y%m%d %H:%M"), as.POSIXct(do.call(paste, c(jd2[c("Date", "Time")])), format = "%Y%m%d %H:%M"),
transform(jd2, timestamp = as.POSIXct(paste(Date, Time), format = "%Y%m%d %H:%M")), times = 100)
## Unit: milliseconds
## expr min lq median uq max neval
## as.POSIXct(paste(jd2$Date, jd2$Time, sep = " "), format = "%Y%m%d %H:%M") 18.84720 18.87736 18.89542 18.93307 20.99021 100
## as.POSIXct(do.call(paste, c(jd2[c("Date", "Time")])), format = "%Y%m%d %H:%M") 18.94440 18.97917 18.99492 19.02220 21.07320 100
## transform(jd2, timestamp = as.POSIXct(paste(Date, Time), format = "%Y%m%d %H:%M")) 19.05581 19.10230 19.12612 19.16877 21.27490 100