继我之前的两个问题之后,如何提高 64 位 C/intel 汇编程序的内存性能/数据局部性和使用 C/Intel 汇编,测试 128 字节内存块是否包含全零的最快方法是什么?,我进一步将这些问题中提到的测试程序的运行时间从 150 秒降低到了 62 秒,如下所述。
64 位程序有五个 4 GB 查找表(bytevecM、bytevecD、bytevecC、bytevecL、bytevecX)。为了减少(大量)缓存未命中的数量,在我上一个问题中分析过,我添加了五个 4 MB 位图,每个查找表一个。
这是原始的内部循环:
psz = (size_t*)&bytevecM[(unsigned int)m7 & 0xffffff80];
if (psz[0] == 0 && psz[1] == 0
&& psz[2] == 0 && psz[3] == 0
&& psz[4] == 0 && psz[5] == 0
&& psz[6] == 0 && psz[7] == 0
&& psz[8] == 0 && psz[9] == 0
&& psz[10] == 0 && psz[11] == 0
&& psz[12] == 0 && psz[13] == 0
&& psz[14] == 0 && psz[15] == 0) continue;
// ... rinse and repeat for bytevecD, bytevecC, bytevecL, bytevecX
// expensive inner loop that scans 128 byte chunks from the 4 GB lookup tables...
这个简单的“预检查”背后的想法是,如果所有 128 个字节都为零,则避免代价高昂的内部循环。然而,正如上次所讨论的,分析表明,由于大量缓存未命中,这种预检查是主要瓶颈。所以我创建了一个 4 MB 的位图来进行预检查。(顺便说一句,大约 36% 的 128 字节块是零,而不是我上次错误报告的 98%)。
这是我用来从 4 GB 查找表创建 4 MB 位图的代码:
// Last chunk index (bitmap size=((LAST_CHUNK_IDX+1)>>3)=4,194,304 bytes)
#define LAST_CHUNK_IDX 33554431
void make_bitmap(
const unsigned char* bytevec, // in: byte vector
unsigned char* bitvec // out: bitmap
)
{
unsigned int uu;
unsigned int ucnt = 0;
unsigned int byte;
unsigned int bit;
const size_t* psz;
for (uu = 0; uu <= LAST_CHUNK_IDX; ++uu)
{
psz = (size_t*)&bytevec[uu << 7];
if (psz[0] == 0 && psz[1] == 0
&& psz[2] == 0 && psz[3] == 0
&& psz[4] == 0 && psz[5] == 0
&& psz[6] == 0 && psz[7] == 0
&& psz[8] == 0 && psz[9] == 0
&& psz[10] == 0 && psz[11] == 0
&& psz[12] == 0 && psz[13] == 0
&& psz[14] == 0 && psz[15] == 0) continue;
++ucnt;
byte = uu >> 3;
bit = (uu & 7);
bitvec[byte] |= (1 << bit);
}
printf("ucnt=%u hits from %u\n", ucnt, LAST_CHUNK_IDX+1);
}
欢迎提出更好的方法来做到这一点。
使用通过上述函数创建的位图,然后我将“预检查”更改为使用 4 MB 位图,而不是 4 GB 查找表,如下所示:
if ( (bitvecM[m7 >> 10] & (1 << ((m7 >> 7) & 7))) == 0 ) continue;
// ... rinse and repeat for bitvecD, bitvecC, bitvecL, bitvecX
// expensive inner loop that scans 128 byte chunks from the 4 GB lookup tables...
这是“成功的”,因为在简单的单线程情况下,运行时间从 150 秒减少到 62 秒。但是,VTune 仍然会报告一些相当大的数字,如下所示。
我分析了一个更现实的测试,其中八个同时运行的线程在不同的范围内运行。内部循环检查零块的 VTune 输出如下所示:
> m7 = (unsigned int)( (m6 ^ q7) * H_PRIME );
> if ( (bitvecM[m7 >> 10] & (1 << ((m7 >> 7) & 7))) == 0 ) continue;
0x1400025c7 Block 15:
mov eax, r15d 1.058s
mov edx, ebx 0.109s
xor eax, ecx 0.777s
imul eax, eax, 0xf4243 1.088s
mov r9d, eax 3.369s
shr eax, 0x7 0.123s
and eax, 0x7 1.306s
movzx ecx, al 1.319s
mov eax, r9d 0.156s
shr rax, 0xa 0.248s
shl edx, cl 1.321s
test byte ptr [rax+r10*1], dl 1.832s
jz 0x140007670 2.037s
> d7 = (unsigned int)( (s6.m128i_i32[0] ^ q7) * H_PRIME );
> if ( (bitvecD[d7 >> 10] & (1 << ((d7 >> 7) & 7))) == 0 ) continue;
0x1400025f3 Block 16:
mov eax, dword ptr [rsp+0x30] 104.983s
mov edx, ebx 1.663s
xor eax, r15d 0.062s
imul eax, eax, 0xf4243 0.513s
mov edi, eax 1.172s
shr eax, 0x7 0.140s
and eax, 0x7 0.062s
movzx ecx, al 0.575s
mov eax, edi 0.689s
shr rax, 0xa 0.016s
shl edx, cl 0.108s
test byte ptr [rax+r11*1], dl 1.591s
jz 0x140007670 1.087s
> c7 = (unsigned int)( (s6.m128i_i32[1] ^ q7) * H_PRIME );
> if ( (bitvecC[c7 >> 10] & (1 << ((c7 >> 7) & 7))) == 0 ) continue;
0x14000261f Block 17:
mov eax, dword ptr [rsp+0x34] 75.863s
mov edx, 0x1 1.097s
xor eax, r15d 0.031s
imul eax, eax, 0xf4243 0.265s
mov ebx, eax 0.512s
shr eax, 0x7 0.016s
and eax, 0x7 0.233s
movzx ecx, al 0.233s
mov eax, ebx 0.279s
shl edx, cl 0.109s
mov rcx, qword ptr [rsp+0x58] 0.652s
shr rax, 0xa 0.171s
movzx ecx, byte ptr [rax+rcx*1] 0.126s
test cl, dl 77.918s
jz 0x140007667
> l7 = (unsigned int)( (s6.m128i_i32[2] ^ q7) * H_PRIME );
> if ( (bitvecL[l7 >> 10] & (1 << ((l7 >> 7) & 7))) == 0 ) continue;
0x140002655 Block 18:
mov eax, dword ptr [rsp+0x38] 0.980s
mov edx, 0x1 0.794s
xor eax, r15d 0.062s
imul eax, eax, 0xf4243 0.187s
mov r11d, eax 0.278s
shr eax, 0x7 0.062s
and eax, 0x7 0.218s
movzx ecx, al 0.218s
mov eax, r11d 0.186s
shl edx, cl 0.031s
mov rcx, qword ptr [rsp+0x50] 0.373s
shr rax, 0xa 0.233s
movzx ecx, byte ptr [rax+rcx*1] 0.047s
test cl, dl 55.060s
jz 0x14000765e
除此之外,大量时间(令我困惑)归因于这条线:
> for (q6 = 1; q6 < 128; ++q6) {
0x1400075a1 Block 779:
inc edx 0.124s
mov dword ptr [rsp+0x10], edx
cmp edx, 0x80 0.031s
jl 0x140002574
mov ecx, dword ptr [rsp+0x4]
mov ebx, dword ptr [rsp+0x48]
...
0x140007575 Block 772:
mov edx, dword ptr [rsp+0x10] 0.699s
...
0x14000765e Block 789 (note: jz in l7 section above jumps here if zero):
mov edx, dword ptr [rsp+0x10] 1.169s
jmp 0x14000757e 0.791s
0x140007667 Block 790 (note: jz in c7 section above jumps here if zero):
mov edx, dword ptr [rsp+0x10] 2.261s
jmp 0x140007583 1.461s
0x140007670 Block 791 (note: jz in m7/d7 section above jumps here if zero):
mov edx, dword ptr [rsp+0x10] 108.355s
jmp 0x140007588 6.922s
我不完全理解上面 VTune 输出中的大数字。如果有人能更清楚地了解这些数字,我会全力以赴。
在我看来,我的 5 个 4 MB 位图比我的 Core i7 3770 处理器的 8 MB L3 缓存要大,导致许多缓存未命中(尽管比以前少得多)。如果我的 CPU 有 30 MB L3 缓存(正如即将推出的 Ivy Bridge-E 一样),我推测这个程序会运行得更快,因为所有五个位图都可以轻松放入 L3 缓存中。那正确吗?
此外,由于测试位图的代码,即:
m7 = (unsigned int)( (m6 ^ q7) * H_PRIME );
bitvecM[m7 >> 10] & (1 << ((m7 >> 7) & 7))) == 0
现在在内循环中出现了五次,非常欢迎任何关于加速此代码的建议。