因此,如果我有数字 [1,2,2,3] 并且我想要 k=2 分区,我将有 [1][2,2,3], [1,2][2,3], [2 ,2][1,3]、[2][1,2,3]、[3][1,2,2] 等。
问问题
1139 次
4 回答
1
在Code Review中查看 Python 中的答案。
于 2013-03-10T00:50:37.737 回答
0
user3569 在Code Review上的解决方案为下面的测试用例生成了五个 2 元组,而不是专门的 3 元组。但是,删除对frozenset()
返回元组的调用会导致代码仅返回 3 元组。修改后的代码如下:
from itertools import chain, combinations
def subsets(arr):
""" Note this only returns non empty subsets of arr"""
return chain(*[combinations(arr,i + 1) for i,a in enumerate(arr)])
def k_subset(arr, k):
s_arr = sorted(arr)
return set([i for i in combinations(subsets(arr),k)
if sorted(chain(*i)) == s_arr])
s = k_subset([2,2,2,2,3,3,5],3)
for ss in sorted(s):
print(len(ss)," - ",ss)
正如 user3569 所说,“它运行速度很慢,但相当简洁”。
(编辑:Knuth 的解决方案见下文)
输出是:
3 - ((2,), (2,), (2, 2, 3, 3, 5))
3 - ((2,), (2, 2), (2, 3, 3, 5))
3 - ((2,), (2, 2, 2), (3, 3, 5))
3 - ((2,), (2, 2, 3), (2, 3, 5))
3 - ((2,), (2, 2, 5), (2, 3, 3))
3 - ((2,), (2, 3), (2, 2, 3, 5))
3 - ((2,), (2, 3, 3), (2, 2, 5))
3 - ((2,), (2, 3, 5), (2, 2, 3))
3 - ((2,), (2, 5), (2, 2, 3, 3))
3 - ((2,), (3,), (2, 2, 2, 3, 5))
3 - ((2,), (3, 3), (2, 2, 2, 5))
3 - ((2,), (3, 5), (2, 2, 2, 3))
3 - ((2,), (5,), (2, 2, 2, 3, 3))
3 - ((2, 2), (2, 2), (3, 3, 5))
3 - ((2, 2), (2, 3), (2, 3, 5))
3 - ((2, 2), (2, 5), (2, 3, 3))
3 - ((2, 2), (3, 3), (2, 2, 5))
3 - ((2, 2), (3, 5), (2, 2, 3))
3 - ((2, 3), (2, 2), (2, 3, 5))
3 - ((2, 3), (2, 3), (2, 2, 5))
3 - ((2, 3), (2, 5), (2, 2, 3))
3 - ((2, 3), (3, 5), (2, 2, 2))
3 - ((2, 5), (2, 2), (2, 3, 3))
3 - ((2, 5), (2, 3), (2, 2, 3))
3 - ((2, 5), (3, 3), (2, 2, 2))
3 - ((3,), (2, 2), (2, 2, 3, 5))
3 - ((3,), (2, 2, 2), (2, 3, 5))
3 - ((3,), (2, 2, 3), (2, 2, 5))
3 - ((3,), (2, 2, 5), (2, 2, 3))
3 - ((3,), (2, 3), (2, 2, 2, 5))
3 - ((3,), (2, 3, 5), (2, 2, 2))
3 - ((3,), (2, 5), (2, 2, 2, 3))
3 - ((3,), (3,), (2, 2, 2, 2, 5))
3 - ((3,), (3, 5), (2, 2, 2, 2))
3 - ((3,), (5,), (2, 2, 2, 2, 3))
3 - ((5,), (2, 2), (2, 2, 3, 3))
3 - ((5,), (2, 2, 2), (2, 3, 3))
3 - ((5,), (2, 2, 3), (2, 2, 3))
3 - ((5,), (2, 3), (2, 2, 2, 3))
3 - ((5,), (2, 3, 3), (2, 2, 2))
3 - ((5,), (3, 3), (2, 2, 2, 2))
Knuth 的解决方案,由 Adeel Zafar Soomro 在同一Code Review页面上实现,如果不需要重复,可以如下调用:
s = algorithm_u([2,2,2,2,3,3,5],3)
ss = set(tuple(sorted(tuple(tuple(y) for y in x) for x in s)))
我没有计时,但 Knuth 的解决方案明显更快,即使对于这个测试用例也是如此。
但是,它返回 63 个元组,而不是 user3569 的解决方案返回的 41 个。我还没有仔细检查输出以确定哪个输出是正确的。
于 2013-03-10T01:59:32.340 回答
0
这是 Haskell 中的一个版本:
import Data.List (nub, sort, permutations)
parts 0 = []
parts n = nub $ map sort $ [n] : [x:xs | x <- [1..n`div`2], xs <- parts(n - x)]
partition [] ys result = sort $ map sort result
partition (x:xs) ys result =
partition xs (drop x ys) (result ++ [take x ys])
partitions xs k =
let variations = filter (\x -> length x == k) $ parts (length xs)
in nub $ concat $ map (\x -> mapVariation x (nub $ permutations xs)) variations
where mapVariation variation = map (\x -> partition variation x [])
OUTPUT:
*Main> partitions [1,2,2,3] 2
[[[1],[2,2,3]],[[1,2,3],[2]],[[1,2,2],[3]],[[1,2],[2,3]],[[1,3],[2,2]]]
于 2013-03-10T06:06:24.367 回答
0
Python解决方案:
pip install PartitionSets
然后:
import partitionsets.partition
filter(lambda x: len(x) == k, partitionsets.partition.Partition(arr))
PartitionSets 的实现似乎非常快,但是很遗憾您不能将分区数量作为参数传递,因此您需要从所有子分区中过滤出您的 k 集分区。
您可能还想查看: researchgate 上的类似主题。
于 2014-10-17T16:21:52.030 回答