与LEFT join sql
_sqldf
library(sqldf)
sqldf('SELECT df2.id , df1.value
FROM df2
LEFT JOIN df1
ON df2.id = df1.id')
id value
1 1 1.000000
2 2 6.210526
3 3 11.421053
4 4 16.631579
5 5 21.842105
6 21 NA
7 22 NA
8 23 NA
编辑添加一些基准测试:
正如预期的那样,比赛在这里非常快。sqldf真的很慢!
对 OP 数据进行测试
library(microbenchmark)
microbenchmark(ag(),ar.dt(),ar.me(),tl())
Unit: microseconds
expr min lq median uq max
1 ag() 23071.953 23536.1680 24053.8590 26889.023 34256.354
2 ar.dt() 3123.972 3284.5890 3348.1155 3523.333 7740.335
3 ar.me() 950.807 1015.2815 1095.1160 1128.112 6330.243
4 tl() 41.340 45.8915 68.0785 71.112 187.735
用大数据测试1E6 行数据。
这里我如何生成我的数据:
N <- 1e6
df1 <- data.frame(id=as.character(1:N),
value=seq(1, 100),
stringsAsFactors=F)
n2 <- 1000
df2 <- data.frame(id=sample(df1$id,n2),
v2=NA,
stringsAsFactors=F)
惊喜 !!合并比 sqldf 快 16 倍,而data.table 解决方案是最慢的!
Unit: milliseconds
expr min lq median uq max
1 ag() 5678.0580 5865.3063 6034.9151 6214.3664 8084.6294
2 ar.dt() 8373.6083 8612.9496 8867.6164 9104.7913 10423.5247
3 ar.me() 387.4665 451.0071 506.8269 648.3958 1014.3099
4 tl() 174.0375 186.8335 214.0468 252.9383 667.6246
其中函数 ag, ar.dt,ar.me, tl 定义为:
ag <- function(){
require(sqldf)
sqldf('SELECT df2.id , df1.value
FROM df2
LEFT JOIN df1
ON df2.id = df1.id')
}
ar.dt <- function(){
require(data.table)
dt1 <- data.table(df1, key="id")
dt2 <- data.table(df2)
dt1[dt2$id, value]
}
ar.me <- function(){
merge(df2, df1, by="id", all.x=T, sort=F)
}
tl <- function(){
df2Needed <- df2
df2Needed$v2 <- df1$value[match(df2$id, df1$id)]
}
编辑 2
似乎在基准测试中包括了 data.table 创建一点点unfair
。为了避免任何混淆,我添加了一个新函数,我认为我已经有了 data.table 结构。
ar.dtLight <- function(){
dt1[dt2$id, value]
}
library(microbenchmark)
microbenchmark(ag(),ar.dt(),ar.me(),tl(),ar.dtLight,times=1)
Unit: microseconds
expr min lq median uq max
1 ag() 7247593.591 7247593.591 7247593.591 7247593.591 7247593.591
2 ar.dt() 8543556.967 8543556.967 8543556.967 8543556.967 8543556.967
3 ar.dtLight 1.139 1.139 1.139 1.139 1.139
4 ar.me() 462235.106 462235.106 462235.106 462235.106 462235.106
5 tl() 201988.996 201988.996 201988.996 201988.996 201988.996
似乎创建键(索引)很耗时。但是一旦创建索引,data.table
方法是无与伦比的。