8

我希望能够获取我当前填充了整数的数据集,并根据某些标准对它们进行分类。该表如下所示:

[in]> df = pd.DataFrame({'A':[0,2,3,2,0,0],'B': [1,0,2,0,0,0],'C': [0,0,1,0,1,0]})
[out]>
   A  B  C
0  0  1  0
1  2  0  0
2  3  2  1
3  2  0  0
4  0  0  1
5  0  0  0

我想按字符串将它们分类在单独的列中。由于对 R 更加熟悉,我尝试使用该列定义中的规则创建一个新列。之后我尝试使用 .ix 和 lambdas ,它们都导致类型错误(在 ints 和 series 之间)。我的印象是这是一个相当简单的问题。尽管以下是完全错误的,但这是尝试 1 的逻辑:

df['D']=(
if ((df['A'] > 0) & (df['B'] == 0) & df['C']==0): 
    return "c1";
elif ((df['A'] == 0) & ((df['B'] > 0) | df['C'] >0)): 
    return "c2";
else:
    return "c3";)

最终结果:

   A  B  C     D
0  0  1  0  "c2"
1  2  0  0  "c1"
2  3  2  1  "c3"
3  2  0  0  "c1"
4  0  0  1  "c2"
5  0  0  0  "c3"

如果有人可以帮助我解决这个问题,将不胜感激。

4

1 回答 1

15

我可以想到两种方法。首先是编写分类器函数,然后.apply逐行编写:

>>> import pandas as pd
>>> df = pd.DataFrame({'A':[0,2,3,2,0,0],'B': [1,0,2,0,0,0],'C': [0,0,1,0,1,0]})
>>> 
>>> def classifier(row):
...         if row["A"] > 0 and row["B"] == 0 and row["C"] == 0:
...                 return "c1"
...         elif row["A"] == 0 and (row["B"] > 0 or row["C"] > 0):
...                 return "c2"
...         else:
...                 return "c3"
...     
>>> df["D"] = df.apply(classifier, axis=1)
>>> df
   A  B  C   D
0  0  1  0  c2
1  2  0  0  c1
2  3  2  1  c3
3  2  0  0  c1
4  0  0  1  c2
5  0  0  0  c3

第二个是使用高级索引:

>>> df = pd.DataFrame({'A':[0,2,3,2,0,0],'B': [1,0,2,0,0,0],'C': [0,0,1,0,1,0]})
>>> df["D"] = "c3"
>>> df["D"][(df["A"] > 0) & (df["B"] == 0) & (df["C"] == 0)] = "c1"
>>> df["D"][(df["A"] == 0) & ((df["B"] > 0) | (df["C"] > 0))] = "c2"
>>> df
   A  B  C   D
0  0  1  0  c2
1  2  0  0  c1
2  3  2  1  c3
3  2  0  0  c1
4  0  0  1  c2
5  0  0  0  c3

哪个更清楚取决于情况。通常,逻辑越复杂,我就越有可能将其包装在一个函数中,然后我可以记录和测试。

于 2013-03-07T20:53:56.313 回答