我有一个 4 列的数据框。第 1 列由 ID 组成,第 2 列由文本组成(每个约 100 个单词),第 3 列和第 4 列由标签组成。
现在我想从文本列中检索词频(最常见的词),并将这些频率作为额外的列添加到数据框中。我希望列名是单词本身,并且在文本中用它们的频率(范围从 0 到每个文本)填充的列。
我尝试了 tm 包的一些功能,但直到现在还不能令人满意。有谁知道如何处理这个问题或从哪里开始?有没有可以完成这项工作的软件包?
id texts label1 label2
我有一个 4 列的数据框。第 1 列由 ID 组成,第 2 列由文本组成(每个约 100 个单词),第 3 列和第 4 列由标签组成。
现在我想从文本列中检索词频(最常见的词),并将这些频率作为额外的列添加到数据框中。我希望列名是单词本身,并且在文本中用它们的频率(范围从 0 到每个文本)填充的列。
我尝试了 tm 包的一些功能,但直到现在还不能令人满意。有谁知道如何处理这个问题或从哪里开始?有没有可以完成这项工作的软件包?
id texts label1 label2
那么让我们解决这些问题......
我猜你有一个看起来像这样的data.frame:
person sex adult state code
1 sam m 0 Computer is fun. Not too fun. K1
2 greg m 0 No it's not, it's dumb. K2
3 teacher m 1 What should we do? K3
4 sam m 0 You liar, it stinks! K4
5 greg m 0 I am telling the truth! K5
6 sally f 0 How can we be certain? K6
7 greg m 0 There is no way. K7
8 sam m 0 I distrust you. K8
9 sally f 0 What are you talking about? K9
10 researcher f 1 Shall we move on? Good then. K10
11 greg m 0 I'm hungry. Let's eat. You already? K11
该数据集来自 qdap 包。让 qdap 使用install.packages("qdap")
。
DATA
现在,为了使我在您的数据集上讨论的可重现示例,使用来自 qdap的数据集执行我在此处所做的事情。
DATA
dput(head(DATA))
现在好了,对于你原来的问题,我认为wfm
会做你想做的事:
freqs <- t(wfm(DATA$state, 1:nrow(DATA)))
data.frame(DATA, freqs, check.names = FALSE)
如果您只想要顶部这么多的单词,请使用我在这里使用的排序技术:
freqs <- t(wfm(DATA$state, 1:nrow(DATA)))
ords <- rev(sort(colSums(freqs)))[1:9] #top 9 words
top9 <- freqs[, names(ords)] #grab those columns from freqs
data.frame(DATA, top9, check.names = FALSE) #put it together
结果如下所示:
> data.frame(DATA, top9, check.names = FALSE)
person sex adult state code you we what not no it's is i fun
1 sam m 0 Computer is fun. Not too fun. K1 0 0 0 1 0 0 1 0 2
2 greg m 0 No it's not, it's dumb. K2 0 0 0 1 1 2 0 0 0
3 teacher m 1 What should we do? K3 0 1 1 0 0 0 0 0 0
4 sam m 0 You liar, it stinks! K4 1 0 0 0 0 0 0 0 0
5 greg m 0 I am telling the truth! K5 0 0 0 0 0 0 0 1 0
6 sally f 0 How can we be certain? K6 0 1 0 0 0 0 0 0 0
7 greg m 0 There is no way. K7 0 0 0 0 1 0 1 0 0
8 sam m 0 I distrust you. K8 1 0 0 0 0 0 0 1 0
9 sally f 0 What are you talking about? K9 1 0 1 0 0 0 0 0 0
10 researcher f 1 Shall we move on? Good then. K10 0 1 0 0 0 0 0 0 0
11 greg m 0 I'm hungry. Let's eat. You already? K11 1 0 0 0 0 0 0 0 0