我想知道通过使用 curand 或其他东西生成一个 0 到 49k 之间的伪随机数的最佳方法是什么,这对于每个线程都是相同的。
我更喜欢在内核中生成随机数,因为我必须一次生成一个,但大约 10k 次。
我可以使用 0.0 到 1.0 之间的浮点数,但我不知道如何使我的 PRN 可用于所有线程,因为大多数帖子和示例都显示了如何为每个线程设置不同的 PRN。
谢谢
可能您只需要研究curand 文档,尤其是设备 API。为每个线程获取相同序列的关键是为每个线程创建状态(大多数示例都这样做),然后将相同的序列号传递给每个线程的 init 函数。在curand_init中,参数的顺序如下:
curand_init(seed, subsequence number, offset, state)
通过为每个 init 调用设置相同的种子,我们为每个线程生成相同的序列。通过将子序列和偏移量设置为相同,我们在该序列中为每个线程选择相同的起始值。
这是演示的代码:
// compile with: nvcc -arch=sm_20 -lcurand -o t89 t89.cu
#include <stdio.h>
#include <curand.h>
#include <curand_kernel.h>
#define SCALE 49000
#define DSIZE 5000
#define nTPB 256
#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)
__device__ float getnextrand(curandState *state){
return (float)(curand_uniform(state));
}
__device__ int getnextrandscaled(curandState *state, int scale){
return (int) scale * getnextrand(state);
}
__global__ void initCurand(curandState *state, unsigned long seed){
int idx = threadIdx.x + blockIdx.x * blockDim.x;
curand_init(seed, 0, 0, &state[idx]);
}
__global__ void testrand(curandState *state, int *a1, int *a2){
int idx = threadIdx.x + blockIdx.x * blockDim.x;
a1[idx] = getnextrandscaled(&state[idx], SCALE);
a2[idx] = getnextrandscaled(&state[idx], SCALE);
}
int main() {
int *h_a1, *h_a2, *d_a1, *d_a2;
curandState *devState;
h_a1 = (int *)malloc(DSIZE*sizeof(int));
if (h_a1 == 0) {printf("malloc fail\n"); return 1;}
h_a2 = (int *)malloc(DSIZE*sizeof(int));
if (h_a2 == 0) {printf("malloc fail\n"); return 1;}
cudaMalloc((void**)&d_a1, DSIZE * sizeof(int));
cudaMalloc((void**)&d_a2, DSIZE * sizeof(int));
cudaMalloc((void**)&devState, DSIZE * sizeof(curandState));
cudaCheckErrors("cudamalloc");
initCurand<<<(DSIZE+nTPB-1)/nTPB,nTPB>>>(devState, 1);
cudaDeviceSynchronize();
cudaCheckErrors("kernels1");
testrand<<<(DSIZE+nTPB-1)/nTPB,nTPB>>>(devState, d_a1, d_a2);
cudaDeviceSynchronize();
cudaCheckErrors("kernels2");
cudaMemcpy(h_a1, d_a1, DSIZE*sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(h_a2, d_a2, DSIZE*sizeof(int), cudaMemcpyDeviceToHost);
cudaCheckErrors("cudamemcpy");
printf("1st returned random value is %d\n", h_a1[0]);
printf("2nd returned random value is %d\n", h_a2[0]);
for (int i=1; i< DSIZE; i++){
if (h_a1[i] != h_a1[0]) {
printf("mismatch on 1st value at %d, val = %d\n", i, h_a1[i]);
return 1;
}
if (h_a2[i] != h_a2[0]) {
printf("mismatch on 2nd value at %d, val = %d\n", i, h_a2[i]);
return 1;
}
}
printf("thread values match!\n");
}