我正在尝试在 GPU 上同时使用随机生成的数字初始化每个这些并行数组的 100 个元素。但是,我的例程不会产生各种随机数。当我在 Visual Studio 中调试代码时,我看到数组中的每个元素都有一个数字。此代码的目的是优化 CImg FilledTriangles 例程以尽可能使用 GPU。
我做错了什么,我该如何解决?这是我的代码:
__global__ void initCurand(curandState* state, unsigned long seed)
int idx = threadIdx.x + blockIdx.x * blockDim.x;
curand_init(seed, idx, 0, &state[idx]);
__syncthreads();
}
/*
* CUDA kernel that will execute 100 threads in parallel
*/
__global__ void initializeArrays(float* posx, float* posy,float* rayon, float* veloc, float* opacity
,float * angle, unsigned char** color, int height, int width, curandState* state){
int idx = threadIdx.x + blockIdx.x * blockDim.x;
curandState localState = state[idx];
__syncthreads();
posx[idx] = (float)(curand_uniform(&localState)*width);
posy[idx] = (float)(curand_uniform(&localState)*height);
rayon[idx] = (float)(10 + curand_uniform(&localState)*50);
angle[idx] = (float)(curand_uniform(&localState)*360);
veloc[idx] = (float)(curand_uniform(&localState)*20 - 10);
color[idx][0] = (unsigned char)(curand_uniform(&localState)*255);
color[idx][1] = (unsigned char)(curand_uniform(&localState)*255);
color[idx][2] = (unsigned char)(curand_uniform(&localState)*255);
opacity[idx] = (float)(0.3 + 1.5*curand_uniform(&localState));
}
这是准备和调用这些内核的主机代码: 我试图在网格的一个块上创建 100 个线程(针对每个元素)。
// launch grid of threads
dim3 dimBlock(100);
dim3 dimGrid(1);
initCurand<<<dimBlock,dimGrid>>>(devState, unsigned(time(nullptr)));
// synchronize the device and the host
cudaDeviceSynchronize();
initializeArrays<<<dimBlock, dimGrid>>>(d_posx, d_posy, d_rayon, d_veloc, d_opacity, d_angle,d_color, img0.height(), img0.width(), devState);
预赛:
// Define random properties (pos, size, colors, ..) for all triangles that will be displayed.
float posx[100], posy[100], rayon[100], angle[100], veloc[100], opacity[100];
// Define the same properties but for the device
float* d_posx;
float* d_posy;
float* d_rayon;
float* d_angle;
float* d_veloc;
float* d_opacity;
//unsigned char d_color[100][3];
unsigned char** d_color;
curandState* devState;
cudaError_t err;
// allocate memory on the device for the device arrays
err = cudaMalloc((void**)&d_posx, 100 * sizeof(float));
err = cudaMalloc((void**)&d_posy, 100 * sizeof(float));
err = cudaMalloc((void**)&d_rayon, 100 * sizeof(float));
err = cudaMalloc((void**)&d_angle, 100 * sizeof(float));
err = cudaMalloc((void**)&d_veloc, 100 * sizeof(float));
err = cudaMalloc((void**)&d_opacity, 100 * sizeof(float));
err = cudaMalloc((void**)&devState, 100*sizeof(curandState));
errCheck(err);
size_t pitch;
//allocated the device memory for source array
err = cudaMallocPitch(&d_color, &pitch, 3 * sizeof(unsigned char),100);
得到结果:
// get the populated arrays back to the host for use
err = cudaMemcpy(posx,d_posx, 100 * sizeof(float), cudaMemcpyDeviceToHost);
err = cudaMemcpy(posy,d_posy, 100 * sizeof(float), cudaMemcpyDeviceToHost);
err = cudaMemcpy(rayon,d_rayon, 100 * sizeof(float), cudaMemcpyDeviceToHost);
err = cudaMemcpy(veloc,d_veloc, 100 * sizeof(float), cudaMemcpyDeviceToHost);
err = cudaMemcpy(opacity,d_opacity, 100 * sizeof(float), cudaMemcpyDeviceToHost);
err = cudaMemcpy(angle,d_angle, 100 * sizeof(float), cudaMemcpyDeviceToHost);
err = cudaMemcpy2D(color,pitch,d_color,100, 100 *sizeof(unsigned char),3, cudaMemcpyDeviceToHost);