Matt's answer for getting the needed n (per group) is almost right, but there is a small error.
Given d (difference in means), s (standard deviation), sig (significance level, typically .05), and power (typically .80), the formula for calculating the number of observations per group is:
n= (2s^2 * ((z_(sig/2) + z_power)^2) / (d^2)
As you can see in his formula, he has
n = s * ((zp + z)**2) / (d**2)
the "s" part is wrong. a correct function that reproduces r's functionality is:
def sample_power_difftest(d, s, power=0.8, sig=0.05):
z = norm.isf([sig/2])
zp = -1 * norm.isf([power])
n = (2*(s**2)) * ((zp + z)**2) / (d**2)
return int(round(n[0]))
Hope this helps.