4

我正在尝试在 CUDA C++ 代码上运行向量步长加法函数,但对于大小为 5,000,000 的大型浮点数组,它的运行速度也比我的 CPU 版本慢。以下是我正在谈论的相关 CUDA 和 cpu 代码:

#define THREADS_PER_BLOCK 1024
typedef float real;
__global__ void vectorStepAddKernel2(real*x, real*y, real*z, real alpha, real beta, int size, int xstep, int ystep, int zstep)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < size)
    {
        x[i*xstep] = alpha* y[i*ystep] + beta*z[i*zstep];
    }
}

cudaError_t vectorStepAdd2(real *x, real*y, real* z, real alpha, real beta, int size, int xstep, int ystep, int zstep)
{

    cudaError_t cudaStatus;
    int threadsPerBlock = THREADS_PER_BLOCK;
    int blocksPerGrid = (size + threadsPerBlock -1)/threadsPerBlock;
    vectorStepAddKernel2<<<blocksPerGrid, threadsPerBlock>>>(x, y, z, alpha, beta, size, xstep, ystep, zstep);

    // cudaDeviceSynchronize waits for the kernel to finish, and returns
    // any errors encountered during the launch.
    cudaStatus = cudaDeviceSynchronize();
    if (cudaStatus != cudaSuccess) {
        fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching vectorStepAddKernel!\n", cudaStatus);
        exit(1);
    }

    return cudaStatus;
}

//CPU function:

void vectorStepAdd3(real *x, real*y, real* z, real alpha, real beta, int size, int xstep, int ystep, int zstep)
{
    for(int i=0;i<size;i++)
    {
        x[i*xstep] = alpha* y[i*ystep] + beta*z[i*zstep];
    }
}

当 3 个数组中的每一个的大小为 5,000,000 且 size=50,000(即,以这种逐步方式将 50,000 个元素相加)时,调用 vectorStepAdd2 会导致计算速度比 vectorStepAdd3 慢。

关于我可以做些什么来加速 GPU 代码的任何想法?我的设备是 Tesla M2090 GPU

谢谢

4

1 回答 1

5

回答您的问题“关于我可以做些什么来加速 GPU 代码的任何想法?”

首先,让我先声明一下,所提议的操作X = alpha * Y + beta * Z对于所需的每字节数据传输没有大量的计算强度。结果,我无法在这个特定代码上击败 CPU 时间。但是,涵盖 2 个想法以加快此代码的速度可能是有益的:

  1. 使用页面锁定内存进行数据传输操作。这使 GPU 版本的数据传输时间减少了约 2 倍,而这在 GPU 版本的整体执行时间中占主导地位。

  2. 使用@njuffa在这里提出的cudaMemcpy2D跨步复制技术。结果是 2 倍:我们可以将数据传输量减少到仅计算所需的量,然后我们可以按照评论中的建议重新编写内核以连续操作数据(再次由 njuffa 提供) . 这使数据传输时间进一步提高了 3 倍,内核计算时间提高了约 10 倍。

此代码提供了这些操作的示例:

#include <stdio.h>
#include <stdlib.h>


#define THREADS_PER_BLOCK 1024
#define DSIZE 5000000
#define WSIZE 50000
#define XSTEP 47
#define YSTEP 43
#define ZSTEP 41
#define TOL 0.00001f


#define cudaCheckErrors(msg) \
    do { \
        cudaError_t __err = cudaGetLastError(); \
        if (__err != cudaSuccess) { \
            fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
                msg, cudaGetErrorString(__err), \
                __FILE__, __LINE__); \
            fprintf(stderr, "*** FAILED - ABORTING\n"); \
            exit(1); \
        } \
    } while (0)

typedef float real;

__global__ void vectorStepAddKernel2(real *x, real *y, real *z, real alpha, real beta, int size, int xstep, int ystep, int zstep)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < size)
    {
        x[i*xstep] = alpha* y[i*ystep] + beta*z[i*zstep];
    }
}

__global__ void vectorStepAddKernel2i(real *x, real *y, real *z, real alpha, real beta, int size)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < size)
    {
        x[i] = alpha* y[i] + beta*z[i];
    }
}

void vectorStepAdd2(real *x, real *y, real *z, real alpha, real beta, int size, int xstep, int ystep, int zstep)
{

    int threadsPerBlock = THREADS_PER_BLOCK;
    int blocksPerGrid = (size + threadsPerBlock -1)/threadsPerBlock;
    vectorStepAddKernel2<<<blocksPerGrid, threadsPerBlock>>>(x, y, z, alpha, beta, size, xstep, ystep, zstep);
    cudaDeviceSynchronize();
    cudaCheckErrors("kernel2 fail");
}


void vectorStepAdd2i(real *x, real *y, real *z, real alpha, real beta, int size)
{

    int threadsPerBlock = THREADS_PER_BLOCK;
    int blocksPerGrid = (size + threadsPerBlock -1)/threadsPerBlock;
    vectorStepAddKernel2i<<<blocksPerGrid, threadsPerBlock>>>(x, y, z, alpha, beta, size);
    cudaDeviceSynchronize();
    cudaCheckErrors("kernel3 fail");
}

//CPU function:

void vectorStepAdd3(real *x, real*y, real* z, real alpha, real beta, int size, int xstep, int ystep, int zstep)
{
    for(int i=0;i<size;i++)
    {
        x[i*xstep] = alpha* y[i*ystep] + beta*z[i*zstep];
    }
}

int main() {

  real *h_x, *h_y, *h_z, *c_x, *h_x1;
  real *d_x, *d_y, *d_z, *d_x1, *d_y1, *d_z1;

  int dsize = DSIZE;
  int wsize = WSIZE;
  int xstep = XSTEP;
  int ystep = YSTEP;
  int zstep = ZSTEP;
  real alpha = 0.5f;
  real beta = 0.5f;
  float et;

/*
  h_x = (real *)malloc(dsize*sizeof(real));
  if (h_x == 0){printf("malloc1 fail\n"); return 1;}
  h_y = (real *)malloc(dsize*sizeof(real));
  if (h_y == 0){printf("malloc2 fail\n"); return 1;}
  h_z = (real *)malloc(dsize*sizeof(real));
  if (h_z == 0){printf("malloc3 fail\n"); return 1;}
  c_x = (real *)malloc(dsize*sizeof(real));
  if (c_x == 0){printf("malloc4 fail\n"); return 1;}
  h_x1 = (real *)malloc(dsize*sizeof(real));
  if (h_x1 == 0){printf("malloc1 fail\n"); return 1;}
*/

  cudaHostAlloc((void **)&h_x, dsize*sizeof(real), cudaHostAllocDefault);
  cudaCheckErrors("cuda Host Alloc 1 fail");
  cudaHostAlloc((void **)&h_y, dsize*sizeof(real), cudaHostAllocDefault);
  cudaCheckErrors("cuda Host Alloc 2 fail");
  cudaHostAlloc((void **)&h_z, dsize*sizeof(real), cudaHostAllocDefault);
  cudaCheckErrors("cuda Host Alloc 3 fail");
  cudaHostAlloc((void **)&c_x, dsize*sizeof(real), cudaHostAllocDefault);
  cudaCheckErrors("cuda Host Alloc 4 fail");
  cudaHostAlloc((void **)&h_x1, dsize*sizeof(real), cudaHostAllocDefault);
  cudaCheckErrors("cuda Host Alloc 5 fail");


  cudaMalloc((void **)&d_x, dsize*sizeof(real));
  cudaCheckErrors("cuda malloc1 fail");
  cudaMalloc((void **)&d_y, dsize*sizeof(real));
  cudaCheckErrors("cuda malloc2 fail");
  cudaMalloc((void **)&d_z, dsize*sizeof(real));
  cudaCheckErrors("cuda malloc3 fail");
  cudaMalloc((void **)&d_x1, wsize*sizeof(real));
  cudaCheckErrors("cuda malloc4 fail");
  cudaMalloc((void **)&d_y1, wsize*sizeof(real));
  cudaCheckErrors("cuda malloc5 fail");
  cudaMalloc((void **)&d_z1, wsize*sizeof(real));
  cudaCheckErrors("cuda malloc6 fail");

  for (int i=0; i< dsize; i++){
    h_x[i] = 0.0f;
    h_x1[i] = 0.0f;
    c_x[i] = 0.0f;
    h_y[i] = (real)(rand()/(real)RAND_MAX);
    h_z[i] = (real)(rand()/(real)RAND_MAX);
    }


  cudaEvent_t t_start, t_stop, k_start, k_stop;
  cudaEventCreate(&t_start);
  cudaEventCreate(&t_stop);
  cudaEventCreate(&k_start);
  cudaEventCreate(&k_stop);
  cudaCheckErrors("event fail");

  // first test original GPU version

  cudaEventRecord(t_start);
  cudaMemcpy(d_x, h_x, dsize * sizeof(real), cudaMemcpyHostToDevice);
  cudaCheckErrors("cuda memcpy 1 fail");
  cudaMemcpy(d_y, h_y, dsize * sizeof(real), cudaMemcpyHostToDevice);
  cudaCheckErrors("cuda memcpy 2 fail");
  cudaMemcpy(d_z, h_z, dsize * sizeof(real), cudaMemcpyHostToDevice);
  cudaCheckErrors("cuda memcpy 3 fail");


  cudaEventRecord(k_start);
  vectorStepAdd2(d_x, d_y, d_z, alpha, beta, wsize, xstep, ystep, zstep);
  cudaEventRecord(k_stop);

  cudaMemcpy(h_x, d_x, dsize * sizeof(real), cudaMemcpyDeviceToHost);
  cudaCheckErrors("cuda memcpy 4 fail");
  cudaEventRecord(t_stop);
  cudaEventSynchronize(t_stop);
  cudaEventElapsedTime(&et, t_start, t_stop);
  printf("GPU original version total elapsed time is: %f ms.\n", et);
  cudaEventElapsedTime(&et, k_start, k_stop);
  printf("GPU original kernel elapsed time is: %f ms.\n", et);

  //now test CPU version

  cudaEventRecord(t_start);
  vectorStepAdd3(c_x, h_y, h_z, alpha, beta, wsize, xstep, ystep, zstep);
  cudaEventRecord(t_stop);
  cudaEventSynchronize(t_stop);
  cudaEventElapsedTime(&et, t_start, t_stop);
  printf("CPU version total elapsed time is: %f ms.\n", et);
  for (int i = 0; i< dsize; i++)
    if (fabsf((float)(h_x[i]-c_x[i])) > TOL) {
      printf("cpu/gpu results mismatch at i = %d, cpu = %f, gpu = %f\n", i, c_x[i], h_x[i]);
      return 1;
      }


  // now test improved GPU version

  cudaEventRecord(t_start);
//  cudaMemcpy2D(d_x1, sizeof(real),  h_x, xstep * sizeof(real), sizeof(real), wsize, cudaMemcpyHostToDevice);
//  cudaCheckErrors("cuda memcpy 5 fail");
  cudaMemcpy2D(d_y1, sizeof(real),  h_y, ystep * sizeof(real), sizeof(real), wsize, cudaMemcpyHostToDevice);
  cudaCheckErrors("cuda memcpy 6 fail");
  cudaMemcpy2D(d_z1, sizeof(real),  h_z, zstep * sizeof(real), sizeof(real), wsize, cudaMemcpyHostToDevice);
  cudaCheckErrors("cuda memcpy 7 fail");

  cudaEventRecord(k_start);
  vectorStepAdd2i(d_x1, d_y1, d_z1, alpha, beta, wsize);
  cudaEventRecord(k_stop);

  cudaMemcpy2D(h_x1, xstep*sizeof(real), d_x1, sizeof(real), sizeof(real), wsize, cudaMemcpyDeviceToHost);
  cudaCheckErrors("cuda memcpy 8 fail");
  cudaEventRecord(t_stop);
  cudaEventSynchronize(t_stop);
  cudaEventElapsedTime(&et, t_start, t_stop);
  printf("GPU improved version total elapsed time is: %f ms.\n", et);
  cudaEventElapsedTime(&et, k_start, k_stop);
  printf("GPU improved kernel elapsed time is: %f ms.\n", et);

  for (int i = 0; i< dsize; i++)
    if (fabsf((float)(h_x[i]-h_x1[i])) > TOL) {
      printf("gpu/gpu improved results mismatch at i = %d, gpu = %f, gpu imp = %f\n", i, h_x[i], h_x1[i]);
      return 1;
      }

  printf("Results:i   CPU     GPU     GPUi \n");
  for (int i = 0; i< 20*xstep; i+=xstep)
    printf("    %d         %f      %f     %f    %f    %f\n",i, c_x[i], h_x[i], h_x1[i]);


  return 0;
}

如前所述,我仍然无法超越 CPU 时间,我将此归因于我自己缺乏编码技能,或者此操作基本上没有足够的计算复杂性在 GPU 上引起兴趣。不过这里有一些示例结果:

GPU original version total elapsed time is: 13.352256 ms.
GPU original kernel elapsed time is: 0.195808 ms.
CPU version total elapsed time is: 2.599584 ms.
GPU improved version total elapsed time is: 4.228288 ms.
GPU improved kernel elapsed time is: 0.027392 ms.
Results:i   CPU     GPU     GPUi
    0         0.617285      0.617285     0.617285
    47         0.554522      0.554522     0.554522
    94         0.104245      0.104245     0.104245
....

我们可以看到改进后的内核与原始内核相比整体减少了大约 3 倍,这几乎都是由于数据复制时间的减少。数据复制时间的减少是由于使用改进的 2D memcpy,我们只需要复制我们实际使用的数据。(如果没有页面锁定的内存,这些数据传输时间大约会增加一倍)。我们还可以看到,内核计算时间比原始内核的 CPU 计算快约 10 倍,比改进内核的 CPU 计算快约 100 倍。然而,考虑到数据传输时间,我们无法克服 CPU 速度。

最后一条评论是 cudaMemcpy2D 操作的“成本”仍然很高。向量大小减少 100 倍,我们只看到复制时间减少了 3 倍。因此,跨步访问仍然是使用 GPU 的一种相对昂贵的方式。如果我们只是传输 50,000 个连续元素的向量,我们预计复制时间几乎线性减少 100 倍(与 5000000 个元素的原始复制向量相比)。这意味着复制的时间将少于 1 毫秒,并且我们的 GPU 版本将比 CPU 更快,至少在这种幼稚的单线程 CPU 代码中是这样。

于 2013-03-04T23:13:48.440 回答