可能没有更简单的方法了。这是一个相当复杂的问题。
由于以下几个原因,您的代码无法正确解决:
- 浮点运算的大多数实际实现不是十进制的,它们是二进制的。因此,当您将浮点数乘以 10 或除以 10 时,可能会丢失精度(这取决于数字)。
- 即使标准
64-bit IEEE-754
浮点格式53
为尾数保留位,相当于floor(log10(2 ^ 53))
=15
十进制数字,但这种格式的有效数字在精确打印时可能需要在小数部分中最多包含一些1080
十进制数字,这就是您的样子询问。
解决此问题的一种方法是使用%a
格式类型说明符 in snprintf()
,它将使用尾数的十六进制数字打印浮点值,并且从 1999 年开始的 C 标准保证,如果浮点格式,这将打印所有有效数字是 radix-2(AKA base-2 或简单的二进制)。所以,有了这个,你可以获得数字尾数的所有二进制数字。从这里您将能够计算出小数部分中有多少个十进制数字。
现在,请注意:
1.00000 = 2 +0 = 1.00000(二进制)
0.50000 = 2 -1 = 0.10000
0.25000 = 2 -2 = 0.01000
0.12500 = 2 -3 = 0.00100 0.06250
= 2 -4 = 0.00010
0.03125 = 1.0 = 2 -0
等等。
您可以在这里清楚地看到,二进制表示i
中该点右侧的第 -th 位置的二进制数字也会在十进制表示中该点右侧的第 -th 位置产生最后一个非零十进制数字i
。
因此,如果您知道二进制浮点数中最低有效的非零位在哪里,您就可以计算出精确打印数字的小数部分需要多少十进制数字。
这就是我的程序正在做的事情。
代码:
// file: PrintFullFraction.c
//
// compile with gcc 4.6.2 or better:
// gcc -Wall -Wextra -std=c99 -O2 PrintFullFraction.c -o PrintFullFraction.exe
#include <limits.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
#include <assert.h>
#if FLT_RADIX != 2
#error currently supported only FLT_RADIX = 2
#endif
int FractionalDigits(double d)
{
char buf[
1 + // sign, '-' or '+'
(sizeof(d) * CHAR_BIT + 3) / 4 + // mantissa hex digits max
1 + // decimal point, '.'
1 + // mantissa-exponent separator, 'p'
1 + // mantissa sign, '-' or '+'
(sizeof(d) * CHAR_BIT + 2) / 3 + // exponent decimal digits max
1 // string terminator, '\0'
];
int n;
char *pp, *p;
int e, lsbFound, lsbPos;
// convert d into "+/- 0x h.hhhh p +/- ddd" representation and check for errors
if ((n = snprintf(buf, sizeof(buf), "%+a", d)) < 0 ||
(unsigned)n >= sizeof(buf))
return -1;
//printf("{%s}", buf);
// make sure the conversion didn't produce something like "nan" or "inf"
// instead of "+/- 0x h.hhhh p +/- ddd"
if (strstr(buf, "0x") != buf + 1 ||
(pp = strchr(buf, 'p')) == NULL)
return 0;
// extract the base-2 exponent manually, checking for overflows
e = 0;
p = pp + 1 + (pp[1] == '-' || pp[1] == '+'); // skip the exponent sign at first
for (; *p != '\0'; p++)
{
if (e > INT_MAX / 10)
return -2;
e *= 10;
if (e > INT_MAX - (*p - '0'))
return -2;
e += *p - '0';
}
if (pp[1] == '-') // apply the sign to the exponent
e = -e;
//printf("[%s|%d]", buf, e);
// find the position of the least significant non-zero bit
lsbFound = lsbPos = 0;
for (p = pp - 1; *p != 'x'; p--)
{
if (*p == '.')
continue;
if (!lsbFound)
{
int hdigit = (*p >= 'a') ? (*p - 'a' + 10) : (*p - '0'); // assuming ASCII chars
if (hdigit)
{
static const int lsbPosInNibble[16] = { 0,4,3,4, 2,4,3,4, 1,4,3,4, 2,4,3,4 };
lsbFound = 1;
lsbPos = -lsbPosInNibble[hdigit];
}
}
else
{
lsbPos -= 4;
}
}
lsbPos += 4;
if (!lsbFound)
return 0; // d is 0 (integer)
// adjust the least significant non-zero bit position
// by the base-2 exponent (just add them), checking
// for overflows
if (lsbPos >= 0 && e >= 0)
return 0; // lsbPos + e >= 0, d is integer
if (lsbPos < 0 && e < 0)
if (lsbPos < INT_MIN - e)
return -2; // d isn't integer and needs too many fractional digits
if ((lsbPos += e) >= 0)
return 0; // d is integer
if (lsbPos == INT_MIN && -INT_MAX != INT_MIN)
return -2; // d isn't integer and needs too many fractional digits
return -lsbPos;
}
const double testData[] =
{
0,
1, // 2 ^ 0
0.5, // 2 ^ -1
0.25, // 2 ^ -2
0.125,
0.0625, // ...
0.03125,
0.015625,
0.0078125, // 2 ^ -7
1.0/256, // 2 ^ -8
1.0/256/256, // 2 ^ -16
1.0/256/256/256, // 2 ^ -24
1.0/256/256/256/256, // 2 ^ -32
1.0/256/256/256/256/256/256/256/256, // 2 ^ -64
3.14159265358979323846264338327950288419716939937510582097494459,
0.1,
INFINITY,
#ifdef NAN
NAN,
#endif
DBL_MIN
};
int main(void)
{
unsigned i;
for (i = 0; i < sizeof(testData) / sizeof(testData[0]); i++)
{
int digits = FractionalDigits(testData[i]);
assert(digits >= 0);
printf("%f %e %.*f\n", testData[i], testData[i], digits, testData[i]);
}
return 0;
}
输出(ideone):
0.000000 0.000000e+00 0
1.000000 1.000000e+00 1
0.500000 5.000000e-01 0.5
0.250000 2.500000e-01 0.25
0.125000 1.250000e-01 0.125
0.062500 6.250000e-02 0.0625
0.031250 3.125000e-02 0.03125
0.015625 1.562500e-02 0.015625
0.007812 7.812500e-03 0.0078125
0.003906 3.906250e-03 0.00390625
0.000015 1.525879e-05 0.0000152587890625
0.000000 5.960464e-08 0.000000059604644775390625
0.000000 2.328306e-10 0.00000000023283064365386962890625
0.000000 5.421011e-20 0.0000000000000000000542101086242752217003726400434970855712890625
3.141593 3.141593e+00 3.141592653589793115997963468544185161590576171875
0.100000 1.000000e-01 0.1000000000000000055511151231257827021181583404541015625
inf inf inf
nan nan nan
0.000000 2.225074e-308 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002225073858507201383090232717332404064219215980462331830553327416887204434813918195854283159012511020564067339731035811005152434161553460108856012385377718821130777993532002330479610147442583636071921565046942503734208375250806650616658158948720491179968591639648500635908770118304874799780887753749949451580451605050915399856582470818645113537935804992115981085766051992433352114352390148795699609591288891602992641511063466313393663477586513029371762047325631781485664350872122828637642044846811407613911477062801689853244110024161447421618567166150540154285084716752901903161322778896729707373123334086988983175067838846926092773977972858659654941091369095406136467568702398678315290680984617210924625396728515625
您可以看到,π
并且0.1
只有15
十进制数字才是正确的,其余数字显示了数字真正四舍五入的结果,因为这些数字不能以二进制浮点格式精确表示。
您还可以看到DBL_MIN
,最小的正归一化double
值1022
在小数部分有数字,其中有715
有效数字。
此解决方案可能存在的问题:
- 您的编译器的
printf()
函数不支持%a
或无法正确打印精度要求的所有数字(这很有可能)。
- 您的计算机使用非二进制浮点格式(这种情况极为罕见)。