我一直在使用 numpy (使用最小二乘法)在 python 中进行一些拟合。
我想知道是否有办法让它适应数据,同时迫使它通过一些固定点?如果没有,python中是否还有另一个库(或我可以链接到的另一种语言-例如c)?
注意我知道可以通过将其移动到原点并将常数项强制为零来强制通过一个固定点,如此处所述,但更普遍地想知道2个或更多固定点:
我一直在使用 numpy (使用最小二乘法)在 python 中进行一些拟合。
我想知道是否有办法让它适应数据,同时迫使它通过一些固定点?如果没有,python中是否还有另一个库(或我可以链接到的另一种语言-例如c)?
注意我知道可以通过将其移动到原点并将常数项强制为零来强制通过一个固定点,如此处所述,但更普遍地想知道2个或更多固定点:
用固定点进行拟合的数学上正确的方法是使用拉格朗日乘数。基本上,您修改要最小化的目标函数,这通常是残差的平方和,为每个固定点添加一个额外的参数。我没有成功地将修改后的目标函数提供给 scipy 的最小化器之一。但是对于多项式拟合,您可以用笔和纸找出细节并将您的问题转换为线性方程组的解:
def polyfit_with_fixed_points(n, x, y, xf, yf) :
mat = np.empty((n + 1 + len(xf),) * 2)
vec = np.empty((n + 1 + len(xf),))
x_n = x**np.arange(2 * n + 1)[:, None]
yx_n = np.sum(x_n[:n + 1] * y, axis=1)
x_n = np.sum(x_n, axis=1)
idx = np.arange(n + 1) + np.arange(n + 1)[:, None]
mat[:n + 1, :n + 1] = np.take(x_n, idx)
xf_n = xf**np.arange(n + 1)[:, None]
mat[:n + 1, n + 1:] = xf_n / 2
mat[n + 1:, :n + 1] = xf_n.T
mat[n + 1:, n + 1:] = 0
vec[:n + 1] = yx_n
vec[n + 1:] = yf
params = np.linalg.solve(mat, vec)
return params[:n + 1]
要测试它是否有效,请尝试以下操作,其中n
是点数、d
多项式次数和f
固定点数:
n, d, f = 50, 8, 3
x = np.random.rand(n)
xf = np.random.rand(f)
poly = np.polynomial.Polynomial(np.random.rand(d + 1))
y = poly(x) + np.random.rand(n) - 0.5
yf = np.random.uniform(np.min(y), np.max(y), size=(f,))
params = polyfit_with_fixed_points(d, x , y, xf, yf)
poly = np.polynomial.Polynomial(params)
xx = np.linspace(0, 1, 1000)
plt.plot(x, y, 'bo')
plt.plot(xf, yf, 'ro')
plt.plot(xx, poly(xx), '-')
plt.show()
当然,拟合多项式完全通过以下点:
>>> yf
array([ 1.03101335, 2.94879161, 2.87288739])
>>> poly(xf)
array([ 1.03101335, 2.94879161, 2.87288739])
如果你使用curve_fit()
,你可以使用sigma
参数给每个点一个权重。下面的例子给出了第一个、中间、最后一个点非常小的sigma,所以拟合结果会非常接近这三个点:
N = 20
x = np.linspace(0, 2, N)
np.random.seed(1)
noise = np.random.randn(N)*0.2
sigma =np.ones(N)
sigma[[0, N//2, -1]] = 0.01
pr = (-2, 3, 0, 1)
y = 1+3.0*x**2-2*x**3+0.3*x**4 + noise
def f(x, *p):
return np.poly1d(p)(x)
p1, _ = optimize.curve_fit(f, x, y, (0, 0, 0, 0, 0), sigma=sigma)
p2, _ = optimize.curve_fit(f, x, y, (0, 0, 0, 0, 0))
x2 = np.linspace(0, 2, 100)
y2 = np.poly1d(p)(x2)
plot(x, y, "o")
plot(x2, f(x2, *p1), "r", label=u"fix three points")
plot(x2, f(x2, *p2), "b", label=u"no fix")
legend(loc="best")
一种简单直接的方法是利用约束最小二乘法,其中约束用较大的数 M 加权,例如:
from numpy import dot
from numpy.linalg import solve
from numpy.polynomial.polynomial import Polynomial as P, polyvander as V
def clsq(A, b, C, d, M= 1e5):
"""A simple constrained least squared solution of Ax= b, s.t. Cx= d,
based on the idea of weighting constraints with a largish number M."""
return solve(dot(A.T, A)+ M* dot(C.T, C), dot(A.T, b)+ M* dot(C.T, d))
def cpf(x, y, x_c, y_c, n, M= 1e5):
"""Constrained polynomial fit based on clsq solution."""
return P(clsq(V(x, n), y, V(x_c, n), y_c, M))
显然,这并不是一个真正包罗万象的灵丹妙药解决方案,但显然,通过一个简单的示例 ( ) 似乎可以很好地工作for M in [0, 4, 24, 124, 624, 3124]
:
In []: x= linspace(-6, 6, 23)
In []: y= sin(x)+ 4e-1* rand(len(x))- 2e-1
In []: x_f, y_f= linspace(-(3./ 2)* pi, (3./ 2)* pi, 4), array([1, -1, 1, -1])
In []: n, x_s= 5, linspace(-6, 6, 123)
In []: plot(x, y, 'bo', x_f, y_f, 'bs', x_s, sin(x_s), 'b--')
Out[]: <snip>
In []: for M in 5** (arange(6))- 1:
....: plot(x_s, cpf(x, y, x_f, y_f, n, M)(x_s))
....:
Out[]: <snip>
In []: ylim([-1.5, 1.5])
Out[]: <snip>
In []: show()
并产生如下输出:
编辑:添加了“确切”解决方案:
from numpy import dot
from numpy.linalg import solve
from numpy.polynomial.polynomial import Polynomial as P, polyvander as V
from scipy.linalg import qr
def solve_ns(A, b): return solve(dot(A.T, A), dot(A.T, b))
def clsq(A, b, C, d):
"""An 'exact' constrained least squared solution of Ax= b, s.t. Cx= d"""
p= C.shape[0]
Q, R= qr(C.T)
xr, AQ= solve(R[:p].T, d), dot(A, Q)
xaq= solve_ns(AQ[:, p:], b- dot(AQ[:, :p], xr))
return dot(Q[:, :p], xr)+ dot(Q[:, p:], xaq)
def cpf(x, y, x_c, y_c, n):
"""Constrained polynomial fit based on clsq solution."""
return P(clsq(V(x, n), y, V(x_c, n), y_c))
并测试适合度:
In []: x= linspace(-6, 6, 23)
In []: y= sin(x)+ 4e-1* rand(len(x))- 2e-1
In []: x_f, y_f= linspace(-(3./ 2)* pi, (3./ 2)* pi, 4), array([1, -1, 1, -1])
In []: n, x_s= 5, linspace(-6, 6, 123)
In []: p= cpf(x, y, x_f, y_f, n)
In []: p(x_f)
Out[]: array([ 1., -1., 1., -1.])