我需要betarand(a,b)
生成具有 beta 分布的随机数的函数的 c 或 c++ 源代码。我知道我可以使用boost库,但我要将它移植到 CUDA 架构,所以我需要代码。有人可以帮助我吗?
同时我有betapdf
(Beta概率密度函数)。但我不知道如何使用它来创建随机数:)。
问问题
7331 次
4 回答
20
C++11 随机数库不提供 beta 发行版。但是,可以根据库提供的两个 gamma 分布对beta 分布进行建模。我已经为你实施了beta_distribution
一个std::gamma_distribution
。据我所知,它完全符合随机数分布的要求。
#include <iostream>
#include <sstream>
#include <string>
#include <random>
namespace sftrabbit {
template <typename RealType = double>
class beta_distribution
{
public:
typedef RealType result_type;
class param_type
{
public:
typedef beta_distribution distribution_type;
explicit param_type(RealType a = 2.0, RealType b = 2.0)
: a_param(a), b_param(b) { }
RealType a() const { return a_param; }
RealType b() const { return b_param; }
bool operator==(const param_type& other) const
{
return (a_param == other.a_param &&
b_param == other.b_param);
}
bool operator!=(const param_type& other) const
{
return !(*this == other);
}
private:
RealType a_param, b_param;
};
explicit beta_distribution(RealType a = 2.0, RealType b = 2.0)
: a_gamma(a), b_gamma(b) { }
explicit beta_distribution(const param_type& param)
: a_gamma(param.a()), b_gamma(param.b()) { }
void reset() { }
param_type param() const
{
return param_type(a(), b());
}
void param(const param_type& param)
{
a_gamma = gamma_dist_type(param.a());
b_gamma = gamma_dist_type(param.b());
}
template <typename URNG>
result_type operator()(URNG& engine)
{
return generate(engine, a_gamma, b_gamma);
}
template <typename URNG>
result_type operator()(URNG& engine, const param_type& param)
{
gamma_dist_type a_param_gamma(param.a()),
b_param_gamma(param.b());
return generate(engine, a_param_gamma, b_param_gamma);
}
result_type min() const { return 0.0; }
result_type max() const { return 1.0; }
result_type a() const { return a_gamma.alpha(); }
result_type b() const { return b_gamma.alpha(); }
bool operator==(const beta_distribution<result_type>& other) const
{
return (param() == other.param() &&
a_gamma == other.a_gamma &&
b_gamma == other.b_gamma);
}
bool operator!=(const beta_distribution<result_type>& other) const
{
return !(*this == other);
}
private:
typedef std::gamma_distribution<result_type> gamma_dist_type;
gamma_dist_type a_gamma, b_gamma;
template <typename URNG>
result_type generate(URNG& engine,
gamma_dist_type& x_gamma,
gamma_dist_type& y_gamma)
{
result_type x = x_gamma(engine);
return x / (x + y_gamma(engine));
}
};
template <typename CharT, typename RealType>
std::basic_ostream<CharT>& operator<<(std::basic_ostream<CharT>& os,
const beta_distribution<RealType>& beta)
{
os << "~Beta(" << beta.a() << "," << beta.b() << ")";
return os;
}
template <typename CharT, typename RealType>
std::basic_istream<CharT>& operator>>(std::basic_istream<CharT>& is,
beta_distribution<RealType>& beta)
{
std::string str;
RealType a, b;
if (std::getline(is, str, '(') && str == "~Beta" &&
is >> a && is.get() == ',' && is >> b && is.get() == ')') {
beta = beta_distribution<RealType>(a, b);
} else {
is.setstate(std::ios::failbit);
}
return is;
}
}
像这样使用它:
std::random_device rd;
std::mt19937 gen(rd());
sftrabbit::beta_distribution<> beta(2, 2);
for (int i = 0; i < 10000; i++) {
std::cout << beta(gen) << std::endl;
}
于 2013-03-01T20:48:02.537 回答
1
Boost“逆不完全Beta”是另一种模拟Beta的快速(且简单)方法。
#include <random>
#include <boost/math/special_functions/beta.hpp>
template<typename URNG>
double beta_sample(URNG& engine, double a, double b)
{
static std::uniform_real_distribution<double> unif(0,1);
double p = unif(engine);
return boost::math::ibeta_inv(a, b, p);
// Use Boost policies if it's not fast enough
}
于 2016-08-19T16:11:20.237 回答
0
查看随机数生成器实现NumPy
:NumPy 分发源
它们是用 C 语言实现的,工作速度非常快。
于 2013-03-01T19:26:30.297 回答