我相信可以通过为自定义模型公式及其梯度创建一个函数来做这样的事情。标准SSlogis函数使用以下形式的逻辑函数:
f(input) = Asym/(1+exp((xmid-input)/scal)) # as in ?SSlogis
您可以修改上述语句以满足您的需要,而不是调用SSlogis 。我相信你会想看看性别是否对固定效应有影响。这是在Asym2中修改特定性别的Asym 子群效果的示例代码:
# Just for loading the data, we will use lme4 for model fitting, not nlme
library(nlme)
library(lme4)
# Careful when loading both nlme and lme4 as they have overlap, strange behaviour may occur
# A more generalized form could be taken e.g. from http://en.wikipedia.org/wiki/Generalised_logistic_curve
# A custom model structure:
Model <- function(age, Asym, Asym2, xmid, scal, Gender)
{
# Taken from ?SSlogis, standard form:
#Asym/(1+exp((xmid-input)/scal))
# Add gender-specific term to Asym2
(Asym+Asym2*Gender)/(1+exp((xmid-age)/scal))
# Evaluation of above form is returned by this function
}
# Model gradient, notice that we include all
# estimated fixed effects like 'Asym', 'Asym2', 'xmid' and 'scal' here,
# but not covariates from the data: 'age' and 'Gender'
ModelGradient <- deriv(
body(Model)[[2]],
namevec = c("Asym", "Asym2", "xmid", "scal"),
function.arg=Model
)
引入性别效应的一种相当典型的方式是使用二进制编码。我会将Sex -变量转换为二进制编码的Gender:
# Binary coding for the gender
Orthodont2 <- data.frame(Orthodont, Gender = as.numeric(Orthodont[,"Sex"])-1)
#> table(Orthodont2[,"Gender"])
# 0 1
#64 44
# Ordering data based on factor levels so they don't mix up paneling in lattice later on
Orthodont2 <- Orthodont2[order(Orthodont2[,"Subject"]),]
然后我可以拟合自定义模型:
# Fit the non-linear mixed effects model
fit <- nlmer(
# Response
distance ~
# Fixed effects
ModelGradient(age = age, Asym, Asym2, xmid, scal, Gender = Gender) ~
# replaces: SSlogis(age,Asym, xmid, scal) ~
# Random effects
(Asym | Subject) + (xmid | Subject),
# Data
data = Orthodont2,
start = c(Asym = 25, Asym2 = 15, xmid = 11, scal = 3))
发生的情况是,当Gender==0(男性)时,模型实现了值:
(Asym+Asym2*0)/(1+exp((xmid-age)/scal)) = (Asym)/(1+exp((xmid-age)/scal))
这实际上是标准的 SSlogis 函数形式。但是,现在有一个二进制开关,如果Gender==1(女性):
(Asym+Asym2)/(1+exp((xmid-age)/scal))
所以我们随着年龄的增长达到的渐近水平实际上是Asym + Asym2,而不仅仅是Asym,对于女性个体。
另请注意,我没有为Asym2指定新的随机效应。由于Asym对性别没有特异性,因此女性个体的个人渐近水平也会因Asym项而有所不同。模型拟合:
> summary(fit)
Nonlinear mixed model fit by the Laplace approximation
Formula: distance ~ ModelGradient(age = age, Asym, Asym2, xmid, scal, Gender = Gender) ~ (Asym | Subject) + (xmid | Subject)
Data: Orthodont2
AIC BIC logLik deviance
268.7 287.5 -127.4 254.7
Random effects:
Groups Name Variance Std.Dev.
Subject Asym 7.0499 2.6552
Subject xmid 4.4285 2.1044
Residual 1.5354 1.2391
Number of obs: 108, groups: Subject, 27
Fixed effects:
Estimate Std. Error t value
Asym 29.882 1.947 15.350
Asym2 -3.493 1.222 -2.859
xmid 1.240 1.068 1.161
scal 5.532 1.782 3.104
Correlation of Fixed Effects:
Asym Asym2 xmid
Asym2 -0.471
xmid -0.584 0.167
scal 0.901 -0.239 -0.773
看起来可能存在性别特定效应(t -2.859),因此随着“年龄”的增加,女性患者的“距离”值似乎会降低:29.882 - 3.493 = 26.389
我不一定建议这是一个好的/最好的模型,只是展示了如何继续自定义lme4中的非线性模型。如果要提取非线性固定效应,模型的可视化需要一些修改(与如何通过观察提取 lmer 固定效应中的线性模型的可视化类似?):
# Extracting fixed effects components by calling the model function, a bit messy but it works
# I like to do this for visualizing the model fit
fixefmat <- matrix(rep(fixef(fit), times=dim(Orthodont2)[1]), ncol=length(fixef(fit)), byrow=TRUE)
colnames(fixefmat) <- names(fixef(fit))
Orthtemp <- data.frame(fixefmat, Orthodont2)
attach(Orthtemp)
# see str(Orthtemp)
# Evaluate the function for rows of the attached data.frame to extract fixed effects corresponding to observations
fix = as.vector(as.formula(body(Model)[[2]]))
detach(Orthtemp)
nobs <- 4 # 4 observations per subject
legend = list(text=list(c("y", "Xb + Zu", "Xb")), lines = list(col=c("blue", "red", "black"), pch=c(1,1,1), lwd=c(1,1,1), type=c("b","b","b")))
require(lattice)
xyplot(
distance ~ age | Subject,
data = Orthodont2,
panel = function(x, y, ...){
panel.points(x, y, type='b', col='blue')
panel.points(x, fix[(1+nobs*(panel.number()-1)):(nobs*(panel.number()))], type='b', col='black')
panel.points(x, fitted(fit)[(1+nobs*(panel.number()-1)):(nobs*(panel.number()))], type='b', col='red')
},
key = legend
)
# Residuals
plot(Orthodont2[,"distance"], resid(fit), xlab="y", ylab="e")
# Distribution of random effects
par(mfrow=c(1,2))
hist(ranef(fit)[[1]][,1], xlab="Random 'Asym'", main="")
hist(ranef(fit)[[1]][,2], xlab="Random 'xmid'", main="")
# Random 'xmid' seems a bit skewed to the right and may violate normal distribution assumption
# This is due to M13 having a bit abnormal growth curve (random effects):
# Asym xmid
#M13 3.07301310 3.9077583
图形输出:
请注意上图中女性 (F##) 个体如何略低于男性 (M##) 对应物(黑线)。例如,中间区域面板中的 M10 <-> F10 差异。
用于观察指定模型的某些特征的残差和随机效应。个别的 M13 似乎有点棘手。