Solidity 它的计算类似于面积/凸包面积之间的比率:
#calculating area from contour
area = cv2.contourArea(unicocnt)
#calculating hull and hull area
hull = cv2.convexHull(unicocnt)
hull_area = cv2.contourArea(hull)
#solidity
solidity = float(area)/hull_area
计算圆形图像我得到的所有值都接近 1 所以我想当我计算轮廓面积时我计算圆圈内的面积而不考虑内部是否是白色像素(轮廓是黑色的)
图片示例:https ://docs.google.com/file/d/0ByS6Z5WRz-h2b0JITFB4aHR0OWc/edit?usp=sharing
代码:
nomeimg = 'Riscalate2/JPEG/e (5).jpg'
img = cv2.imread(nomeimg)
gray = cv2.imread(nomeimg,0)#convert grayscale adn binarize
element = cv2.getStructuringElement(cv2.MORPH_CROSS,(6,6))
graydilate = cv2.erode(gray, element) #imgbnbin
cv2.imshow('image',graydilate)
cv2.waitKey(0)
ret,thresh = cv2.threshold(graydilate,127,255,cv2.THRESH_BINARY_INV) # binarize
imgbnbin = thresh
cv2.imshow('bn',thresh)
cv2.waitKey()
#element = cv2.getStructuringElement(cv2.MORPH_CROSS,(2,2))
#element = np.ones((11,11),'uint8')
contours, hierarchy = cv2.findContours(imgbnbin, cv2.RETR_TREE ,cv2.CHAIN_APPROX_SIMPLE)
print(len(contours))
# Take only biggest contour basing on area
Areacontours = list()
calcarea = 0.0
unicocnt = 0.0
for i in range (0, len(contours)):
area = cv2.contourArea(contours[i])
#print("area")
#print(area)
if (area > 90 ): #con 90 trova i segni e togli puntini
if (calcarea<area):
calcarea = area
unicocnt = contours[i]
#calculating area from contour
area = cv2.contourArea(unicocnt)
#calculating hull and hull area
hull = cv2.convexHull(unicocnt)
hull_area = cv2.contourArea(hull)
#solidity
solidity = float(area)/hull_area
更新
我是这样做的:
ColoredArea = 0
for i in range(0,len(imgbnbin)):
a = imgbnbin[i]
for j in range (0, len(a)):
if (cv2.pointPolygonTest(hull, unicocnt) >= 0):
if (getPixel(x,y) == black):
ColoredArea = ColoredArea +1;
出现此错误:
if (cv2.pointPolygonTest(hull, unicocnt) >= 0):
TypeError: Required argument 'measureDist' (pos 3) not found