2

我正在尝试使用 lmer 函数来研究 3 种不同条件(cond=0、1、2)和目标的存在(target=False 或 True)之间的反应时间 (RT) 是否存在交互影响患者(患者)。

我写了以下等式:

lmer(RT~cond*target+(1|Patient))

我的问题是这个函数的默认截距是 cond = 0 和 target = False,而我希望截距是 cond= 0 和 target=True (以便查看 cond0*target= 之间是否存在显着差异真和 cond1*target=True)。

我将衷心感谢您的帮助。

这是我的输出

stu3<-lmer(RT~cond*target+(1|Patient), 
   data=subset(ss, Groupe=="ugs" & primeable ==TRUE     & 
          Correct==TRUE & NoPrac==TRUE))

pvals.fnc(stu3)


$fixed
                  Estimate MCMCmean HPD95lower HPD95upper  pMCMC Pr(>|t|)
(Intercept)         0.5511   0.5513     0.5258     0.5807 0.0001   0.0000
cond1               0.0618   0.0619     0.0498     0.0741 0.0001   0.0000
cond2               0.0285   0.0285     0.0142     0.0438 0.0002   0.0001
targetFALSE         0.1389   0.1389     0.1239     0.1549 0.0001   0.0000
cond1:targetFALSE  -0.0752  -0.0751    -0.0943    -0.0545 0.0001   0.0000
cond2:targetFALSE  -0.0788  -0.0786    -0.0998    -0.0564 0.0001   0.0000

$random
    Groups        Name Std.Dev. MCMCmedian MCMCmean HPD95lower HPD95upper
1  Patient (Intercept)   0.0610     0.0583   0.0599     0.0425     0.0797
2 Residual               0.1674     0.1674   0.1674     0.1650     0.1699

根据我的数据,选择的截距是cond0:targetTRUE,输出中的其他级别是cond1:targetFALSEcond2:targetFALSE

4

2 回答 2

1

如果我理解正确,您的模型已经在进行您希望在内部进行的解释target==TRUE。如果我是正确的,您可以将示例中的模型术语翻译如下:

"(Intercept)"       -> target==TRUE, cond==0 (even if model matrix contains all conds)
"cond1"             -> target==TRUE, cond==1 on top of cond==0
"cond2"             -> target==TRUE, cond==2 on top of cond==0
"targetFALSE"       -> target==FALSE, cond==0 (even if model matrix contains all conds)
"cond1:targetFALSE" -> target==FALSE, cond==1 on top of cond==0
"cond2:targetFALSE" -> target==FALSE, cond==2 on top of cond==0

"(Intercept)"那么,不是用"cond1"和检测到有趣的差异"cond2"吗?查看固定效应的模型矩阵结构getME(stu3,'X')可能会有所帮助。

以下是我为测试您的案例而构建的示例数据。请注意,我构建了三种不同的响应:一种没有任何效果,一种只有target==TRUE效果,另一种有效果,以及与 的不同级别的target==TRUE交互效果。在和中检测到人为引入的效果:target==TRUEcondfit1fit2

set.seed(0)
struct <- expand.grid(target = c(FALSE,TRUE), cond = as.factor(0:2), patient = LETTERS[1:20])
attach(struct)
ranpatient <- rep(rnorm(20), each=6)
rerror <- rnorm(120)
# Just random noise
response0 <- ranpatient + rerror
# When target==TRUE we increment the response by 1 and add errors
response1 <- 1*target + ranpatient + rerror
# When target==TRUE we increment the response by  1,
# to which we also add an interaction effect condition {0,1,2} * target {0,1}
# notice that numeric transformation of cond {0,1,2} transforms to ranks {1,2,3}
response2 <- 1*target + target*(as.numeric(cond)-1) + ranpatient + rerror

dat <- data.frame(cond, target, patient, response0, response1, response2)   
detach(struct)

require(lme4)
fit0 <- lmer(response0 ~ cond*target + (1|patient), data=dat)
fit1 <- lmer(response1 ~ cond*target + (1|patient), data=dat)
fit2 <- lmer(response2 ~ cond*target + (1|patient), data=dat)

head(dat)
round(coef(summary(fit0)),2) # Notice low t values
round(coef(summary(fit1)),2) # High t value for targetTRUE
round(coef(summary(fit2)),2) # High t value for interaction cond0/1/2 with targetTRUE
# Notice how cond==1 adds 1, and cond==2 adds 2 in comparison to cond==0 when targetTRUE
# Notice also that coefficient "cond2:targetTRUE" is incremental to term "targetTRUE", not "cond1:targetTRUE"
head(getME(fit2,'X')) # Columns correspond to the fixed effect terms

随着输出

> head(dat)
  cond target patient response0 response1 response2
1    0  FALSE       A  1.038686  1.038686  1.038686
2    0   TRUE       A  1.640350  2.640350  2.640350
3    1  FALSE       A  1.396291  1.396291  1.396291
4    1   TRUE       A  2.067144  3.067144  4.067144
5    2  FALSE       A  1.205848  1.205848  1.205848
6    2   TRUE       A  1.766562  2.766562  4.766562
> round(coef(summary(fit0)),2) # Notice low t values
                 Estimate Std. Error t value
(Intercept)         -0.13       0.31   -0.40
cond1                0.18       0.29    0.62
cond2                0.00       0.29    0.00
targetTRUE           0.00       0.29   -0.01
cond1:targetTRUE     0.13       0.41    0.32
cond2:targetTRUE     0.08       0.41    0.19
> round(coef(summary(fit1)),2) # High t value for targetTRUE
                 Estimate Std. Error t value
(Intercept)         -0.13       0.31   -0.40
cond1                0.18       0.29    0.62
cond2                0.00       0.29    0.00
targetTRUE           1.00       0.29    3.42
cond1:targetTRUE     0.13       0.41    0.32
cond2:targetTRUE     0.08       0.41    0.19
> round(coef(summary(fit2)),2) # High t value for interaction cond0/1/2 with targetTRUE
                 Estimate Std. Error t value
(Intercept)         -0.13       0.31   -0.40
cond1                0.18       0.29    0.62
cond2                0.00       0.29    0.00
targetTRUE           1.00       0.29    3.42
cond1:targetTRUE     1.13       0.41    2.75
cond2:targetTRUE     2.08       0.41    5.04
> # Notice how cond==1 adds 1, and cond==2 adds 2 in comparison to cond==0 when targetTRUE
> # Notice also that coefficient "cond2:targetTRUE" is incremental to term "targetTRUE", not "cond1:targetTRUE"
> head(getME(fit2,'X')) # Columns correspond to the fixed effect terms
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    0    0    0    0    0
[2,]    1    0    0    1    0    0
[3,]    1    1    0    0    0    0
[4,]    1    1    0    1    1    0
[5,]    1    0    1    0    0    0
[6,]    1    0    1    1    0    1
于 2013-02-28T13:18:46.403 回答
1

看看标准的“因素管理”是否有效:

target=factor(target, levels=c("TRUE", "FALSE")
lmer(RT~cond*target+(1|Patient))

(我会使用短语“改变参考水平”而不是“改变截距”,但我想这实际上是相同的过程。我怀疑“改变参考水平”这个短语会让你在 MarkMail Rhelp 上获得很少的点击或搜索。)

于 2013-02-27T20:18:31.090 回答