3

注意:我认为 datetime64 正在做正确的事情。所以我会留下帖子,以防它有用。

从 numpy 1.7.0 开始,传入 np.datetime64 的秒数被解释为在本地时区中。有没有一种干净快速的方法可以将 unix utc 秒数导入 np.datetime64?我有 50M 的数组,似乎应该有办法告诉 np.datetime64 我的秒值是 UTC,不是吗?

datetime.datetime.utcfromtimestamp(1338624706)
datetime.datetime(2012, 6, 2, 8, 11, 46)  # this is the time I'm looking for

np.datetime64(1338624706, 's')
numpy.datetime64('2012-06-02T01:11:46-0700')  # Darn you ISO!  Off by 7 hours

dt64 = np.datetime64(1338624706, 's')
dt64.astype(datetime.datetime)
datetime.datetime(2012, 6, 2, 8, 11, 46)  # Wait, did it do the right thing?

# This seems like the best option at the moment,
# but requires building datetime.datetime objects:
dt64 = np.datetime64(datetime.datetime.utcfromtimestamp(1338624706))
numpy.datetime64('2012-06-02T01:11:46.000000-0700') # Show this
dt64.astype(datetime.datetime)
datetime.datetime(2012, 6, 2, 8, 11, 46)  # Looks like it worked

我真的不想诉诸字符串操作。我很高兴能够将 unix utc ints 或浮点数组直接转换为正确的 dt64。

https://stackoverflow.com/a/13704307/417578暗示 numpy 1.8.0 可能会做我想做的事,但是有什么可以在 1.7.0 中使用吗?

4

2 回答 2

4

这是 pandas 中的另一种方式(它可以正确处理不同版本的 numpy datetime64 中的怪癖,所以这在 numpy 1.6.2 中有效) - 我认为你可能需要当前的 master (0.11-dev)

# obviously replace this by your utc seconds
# need to convert to the default in pandas of datetime64[ns]
z = pd.Series([(1338624706 + i)*1e9 for i in range(50)],dtype='datetime64[ns]')

In [35]: z.head()
Out[35]: 
0   2012-06-02 08:11:46
1   2012-06-02 08:11:47
2   2012-06-02 08:11:48
3   2012-06-02 08:11:49
4   2012-06-02 08:11:50
Dtype: datetime64[ns]

# turn it into a DatetimeIndex and localize
lidx = pd.DatetimeIndex(z).tz_localize('UTC')

<class 'pandas.tseries.index.DatetimeIndex'>
[2012-06-02 08:11:46, ..., 2012-06-02 08:12:35]
Length: 50, Freq: None, Timezone: UTC

# now you have a nice object to say convert timezones
In [44]: lidx.tz_convert('US/Eastern')
Out[44]: 
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-06-02 04:11:46, ..., 2012-06-02 04:12:35]
Length: 50, Freq: None, Timezone: US/Eastern
于 2013-02-24T20:36:44.023 回答
2

也许我误解了这个问题,但时区不只是显示问题吗?

utc_time = datetime.datetime.utcnow()
print utc_time
dt64 =  np.datetime64(utc_time)
print dt64
print dt64.astype(datetime.datetime)


2013-02-24 17:30:53.586297
2013-02-24T11:30:53.586297-0600
2013-02-24 17:30:53.586297

时间没有以任何方式“改变”:

some_time = datetime.datetime.utcfromtimestamp(1338624706)
dt64 = np.datetime64(1338624706,'s')
print dt64.astype(int64)
1338624706

这是从 numpy 1.7 开始的。

于 2013-02-24T17:35:04.040 回答