2

为什么gensim我转换语料库后 tf-idf 模型会丢弃术语和计数?

我的代码:

from gensim import corpora, models, similarities

# Let's say you have a corpus made up of 2 documents.
doc0 = [(0, 1), (1, 1)]
doc1 = [(0,1)]
doc2 = [(0, 1), (1, 1)]
doc3 = [(0, 3), (1, 1)]

corpus = [doc0,doc1,doc2,doc3]

# Train a tfidf model using the corpus
tfidf = models.TfidfModel(corpus)

# Now if you print the corpus, it still remains as the flat frequency counts.
for d in corpus:
  print d
print 

# To convert the corpus into tfidf, re-initialize the corpus 
# according to the model to get the normalized frequencies.
corpus = tfidf[corpus]

for d in corpus:
  print d

输出:

[(0, 1.0), (1, 1.0)]
[(0, 1.0)]
[(0, 1.0), (1, 1.0)]
[(0, 3.0), (1, 1.0)]

[(1, 1.0)]
[]
[(1, 1.0)]
[(1, 1.0)]
4

1 回答 1

6

IDF 是通过将文档总数除以包含该术语的文档数,然后取该商的对数来获得的。在您的情况下,所有文档都有 term0,因此 term0 的 IDF 是 log(1),等于 0。所以在您的 doc-term 矩阵中,term0 的列全为零。

出现在所有文档中的术语权重为零,它绝对不携带任何信息。

于 2013-03-14T07:35:48.120 回答