为什么gensim
我转换语料库后 tf-idf 模型会丢弃术语和计数?
我的代码:
from gensim import corpora, models, similarities
# Let's say you have a corpus made up of 2 documents.
doc0 = [(0, 1), (1, 1)]
doc1 = [(0,1)]
doc2 = [(0, 1), (1, 1)]
doc3 = [(0, 3), (1, 1)]
corpus = [doc0,doc1,doc2,doc3]
# Train a tfidf model using the corpus
tfidf = models.TfidfModel(corpus)
# Now if you print the corpus, it still remains as the flat frequency counts.
for d in corpus:
print d
print
# To convert the corpus into tfidf, re-initialize the corpus
# according to the model to get the normalized frequencies.
corpus = tfidf[corpus]
for d in corpus:
print d
输出:
[(0, 1.0), (1, 1.0)]
[(0, 1.0)]
[(0, 1.0), (1, 1.0)]
[(0, 3.0), (1, 1.0)]
[(1, 1.0)]
[]
[(1, 1.0)]
[(1, 1.0)]