0

我写了一个分数类,但在简化时遇到了麻烦。

当我制作 Fraction 对象时,一切正常,我只是认为我的逻辑因简化而混乱。

(num 和 den 分别是分子和分母类中的私有变量)

这是我的 GCD 和 Simplify 方法:

/**
 * Returns the absolute value of the greatest common divisor of this
 * fraction's numerator and denominator. If the numerator or denominator is
 * zero, this method returns 0. This method always returns either a positive
 * integer, or zero.
 * 
 * @return Returns the greatest common denominator
 */
private int gcd() {
    int s;
    if (num > den)
        s = den;
    else
        s = num;
    for (int i = s; i > 0; i--) {
        if ((num % i == 0) && (den % i == 0))
            return i;
    }
    return -1;
}

/**
 * Changes this fraction's numerator and denominator to "lowest terms"
 * (sometimes referred to as a "common fraction"), by dividing the numerator
 * and denominator by their greatest common divisor. This includes fixing
 * the signs. For example, if a fraction is 24/-18, this method will change
 * it to -4/3. If the numerator or denominator of the fraction is zero, no
 * change is made.
 */
public void simplify() {

    if (isZero() == false) {// Making sure num or den is not zero.
        this.fixSigns(); // Fix signs first

        if (gcd() > 1) {
            this.num = num / gcd();
            this.den = num / gcd();
        }
    }
}
4

1 回答 1

2

我马上看到两件事:对于分子和分母中的每一个,您都除以两次numgcd()此外,一旦您更改了分子,那么调用的结果gcd()可能会改变。调用“gcd”一次,存储它的结果,并在以后使用它:

int gcd = gcd();
if (gcd > 1) {
   this.num = this.num / gcd;
   this.den = this.den / gcd;
}

此外,还有更有效的获取最大公约数的方法:Wikipedia's page。请参阅该页面上的 Euclid 算法。

于 2013-02-19T18:50:26.807 回答