我正在为我的应用程序设计一种文件格式,我显然希望它能够在大端和小端系统上工作。我已经找到了使用htonl
and管理整数类型的有效解决方案,但是在尝试对and值ntohl
做同样的事情时我有点卡住了。float
double
鉴于浮点表示如何工作的性质,我假设标准字节顺序函数不适用于这些值。同样,我什至不完全确定传统意义上的字节序是否决定了这些类型的字节顺序。
我需要的只是一致性。一种写出的方法double
,并确保我在读回它时得到相同的值。我怎样才能在 C 中做到这一点?
我正在为我的应用程序设计一种文件格式,我显然希望它能够在大端和小端系统上工作。我已经找到了使用htonl
and管理整数类型的有效解决方案,但是在尝试对and值ntohl
做同样的事情时我有点卡住了。float
double
鉴于浮点表示如何工作的性质,我假设标准字节顺序函数不适用于这些值。同样,我什至不完全确定传统意义上的字节序是否决定了这些类型的字节顺序。
我需要的只是一致性。一种写出的方法double
,并确保我在读回它时得到相同的值。我怎样才能在 C 中做到这一点?
另一种选择是使用double frexp(double value, int *exp);
from <math.h>
(C99) 将浮点值分解为归一化分数(在 [0.5, 1) 范围内)和 2 的整数幂。然后您可以将分数乘以FLT_RADIX
DBL_MANT_DIG
得到整数在 [ FLT_RADIX
DBL_MANT_DIG
/2, FLT_RADIX
DBL_MANT_DIG
) 范围内。然后你保存两个整数 big-endian 或 little-endian,无论你选择哪种格式。
当您加载保存的数字时,您执行相反的操作并使用double ldexp(double x, int exp);
将重构的分数乘以 2 的幂。
FLT_RADIX
当=2(我想几乎所有系统?)和DBL_MANT_DIG
<=64时,这将最有效。
必须小心避免溢出。
示例代码doubles
:
#include <limits.h>
#include <float.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#if CHAR_BIT != 8
#error currently supported only CHAR_BIT = 8
#endif
#if FLT_RADIX != 2
#error currently supported only FLT_RADIX = 2
#endif
#ifndef M_PI
#define M_PI 3.14159265358979324
#endif
typedef unsigned char uint8;
/*
10-byte little-endian serialized format for double:
- normalized mantissa stored as 64-bit (8-byte) signed integer:
negative range: (-2^53, -2^52]
zero: 0
positive range: [+2^52, +2^53)
- 16-bit (2-byte) signed exponent:
range: [-0x7FFE, +0x7FFE]
Represented value = mantissa * 2^(exponent - 53)
Special cases:
- +infinity: mantissa = 0x7FFFFFFFFFFFFFFF, exp = 0x7FFF
- -infinity: mantissa = 0x8000000000000000, exp = 0x7FFF
- NaN: mantissa = 0x0000000000000000, exp = 0x7FFF
- +/-0: only one zero supported
*/
void Double2Bytes(uint8 buf[10], double x)
{
double m;
long long im; // at least 64 bits
int ie;
int i;
if (isnan(x))
{
// NaN
memcpy(buf, "\x00\x00\x00\x00\x00\x00\x00\x00" "\xFF\x7F", 10);
return;
}
else if (isinf(x))
{
if (signbit(x))
// -inf
memcpy(buf, "\x00\x00\x00\x00\x00\x00\x00\x80" "\xFF\x7F", 10);
else
// +inf
memcpy(buf, "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x7F" "\xFF\x7F", 10);
return;
}
// Split double into normalized mantissa (range: (-1, -0.5], 0, [+0.5, +1))
// and base-2 exponent
m = frexp(x, &ie); // x = m * 2^ie exactly for FLT_RADIX=2
// frexp() can't fail
// Extract most significant 53 bits of mantissa as integer
m = ldexp(m, 53); // can't overflow because
// DBL_MAX_10_EXP >= 37 equivalent to DBL_MAX_2_EXP >= 122
im = trunc(m); // exact unless DBL_MANT_DIG > 53
// If the exponent is too small or too big, reduce the number to 0 or
// +/- infinity
if (ie > 0x7FFE)
{
if (im < 0)
// -inf
memcpy(buf, "\x00\x00\x00\x00\x00\x00\x00\x80" "\xFF\x7F", 10);
else
// +inf
memcpy(buf, "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x7F" "\xFF\x7F", 10);
return;
}
else if (ie < -0x7FFE)
{
// 0
memcpy(buf, "\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00", 10);
return;
}
// Store im as signed 64-bit little-endian integer
for (i = 0; i < 8; i++, im >>= 8)
buf[i] = (uint8)im;
// Store ie as signed 16-bit little-endian integer
for (i = 8; i < 10; i++, ie >>= 8)
buf[i] = (uint8)ie;
}
void Bytes2Double(double* x, const uint8 buf[10])
{
unsigned long long uim; // at least 64 bits
long long im; // ditto
unsigned uie;
int ie;
double m;
int i;
int negative = 0;
int maxe;
if (!memcmp(buf, "\x00\x00\x00\x00\x00\x00\x00\x00" "\xFF\x7F", 10))
{
#ifdef NAN
*x = NAN;
#else
*x = 0; // NaN is not supported, use 0 instead (we could return an error)
#endif
return;
}
if (!memcmp(buf, "\x00\x00\x00\x00\x00\x00\x00\x80" "\xFF\x7F", 10))
{
*x = -INFINITY;
return;
}
else if (!memcmp(buf, "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x7F" "\xFF\x7F", 10))
{
*x = INFINITY;
return;
}
// Load im as signed 64-bit little-endian integer
uim = 0;
for (i = 0; i < 8; i++)
{
uim >>= 8;
uim |= (unsigned long long)buf[i] << (64 - 8);
}
if (uim <= 0x7FFFFFFFFFFFFFFFLL)
im = uim;
else
im = (long long)(uim - 0x7FFFFFFFFFFFFFFFLL - 1) - 0x7FFFFFFFFFFFFFFFLL - 1;
// Obtain the absolute value of the mantissa, make sure it's
// normalized and fits into 53 bits, else the input is invalid
if (im > 0)
{
if (im < (1LL << 52) || im >= (1LL << 53))
{
#ifdef NAN
*x = NAN;
#else
*x = 0; // NaN is not supported, use 0 instead (we could return an error)
#endif
return;
}
}
else if (im < 0)
{
if (im > -(1LL << 52) || im <= -(1LL << 53))
{
#ifdef NAN
*x = NAN;
#else
*x = 0; // NaN is not supported, use 0 instead (we could return an error)
#endif
return;
}
negative = 1;
im = -im;
}
// Load ie as signed 16-bit little-endian integer
uie = 0;
for (i = 8; i < 10; i++)
{
uie >>= 8;
uie |= (unsigned)buf[i] << (16 - 8);
}
if (uie <= 0x7FFF)
ie = uie;
else
ie = (int)(uie - 0x7FFF - 1) - 0x7FFF - 1;
// If DBL_MANT_DIG < 53, truncate the mantissa
im >>= (53 > DBL_MANT_DIG) ? (53 - DBL_MANT_DIG) : 0;
m = im;
m = ldexp(m, (53 > DBL_MANT_DIG) ? -DBL_MANT_DIG : -53); // can't overflow
// because DBL_MAX_10_EXP >= 37 equivalent to DBL_MAX_2_EXP >= 122
// Find out the maximum base-2 exponent and
// if ours is greater, return +/- infinity
frexp(DBL_MAX, &maxe);
if (ie > maxe)
m = INFINITY;
else
m = ldexp(m, ie); // underflow may cause a floating-point exception
*x = negative ? -m : m;
}
int test(double x, const char* name)
{
uint8 buf[10], buf2[10];
double x2;
int error1, error2;
Double2Bytes(buf, x);
Bytes2Double(&x2, buf);
Double2Bytes(buf2, x2);
printf("%+.15E '%s' -> %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X\n",
x,
name,
buf[0],buf[1],buf[2],buf[3],buf[4],buf[5],buf[6],buf[7],buf[8],buf[9]);
if ((error1 = memcmp(&x, &x2, sizeof(x))) != 0)
puts("Bytes2Double(Double2Bytes(x)) != x");
if ((error2 = memcmp(buf, buf2, sizeof(buf))) != 0)
puts("Double2Bytes(Bytes2Double(Double2Bytes(x))) != Double2Bytes(x)");
puts("");
return error1 || error2;
}
int testInf(void)
{
uint8 buf[10];
double x, x2;
int error;
x = DBL_MAX;
Double2Bytes(buf, x);
if (!++buf[8])
++buf[9]; // increment the exponent beyond the maximum
Bytes2Double(&x2, buf);
printf("%02X %02X %02X %02X %02X %02X %02X %02X %02X %02X -> %+.15E\n",
buf[0],buf[1],buf[2],buf[3],buf[4],buf[5],buf[6],buf[7],buf[8],buf[9],
x2);
if ((error = !isinf(x2)) != 0)
puts("Bytes2Double(Double2Bytes(DBL_MAX) * 2) != INF");
puts("");
return error;
}
#define VALUE_AND_NAME(V) { V, #V }
const struct
{
double value;
const char* name;
} testData[] =
{
#ifdef NAN
VALUE_AND_NAME(NAN),
#endif
VALUE_AND_NAME(0.0),
VALUE_AND_NAME(+DBL_MIN),
VALUE_AND_NAME(-DBL_MIN),
VALUE_AND_NAME(+1.0),
VALUE_AND_NAME(-1.0),
VALUE_AND_NAME(+M_PI),
VALUE_AND_NAME(-M_PI),
VALUE_AND_NAME(+DBL_MAX),
VALUE_AND_NAME(-DBL_MAX),
VALUE_AND_NAME(+INFINITY),
VALUE_AND_NAME(-INFINITY),
};
int main(void)
{
unsigned i;
int errors = 0;
for (i = 0; i < sizeof(testData) / sizeof(testData[0]); i++)
errors += test(testData[i].value, testData[i].name);
errors += testInf();
// Test subnormal values. A floating-point exception may be raised.
errors += test(+DBL_MIN / 2, "+DBL_MIN / 2");
errors += test(-DBL_MIN / 2, "-DBL_MIN / 2");
printf("%d error(s)\n", errors);
return 0;
}
输出(ideone):
+NAN 'NAN' -> 00 00 00 00 00 00 00 00 FF 7F
+0.000000000000000E+00 '0.0' -> 00 00 00 00 00 00 00 00 00 00
+2.225073858507201E-308 '+DBL_MIN' -> 00 00 00 00 00 00 10 00 03 FC
-2.225073858507201E-308 '-DBL_MIN' -> 00 00 00 00 00 00 F0 FF 03 FC
+1.000000000000000E+00 '+1.0' -> 00 00 00 00 00 00 10 00 01 00
-1.000000000000000E+00 '-1.0' -> 00 00 00 00 00 00 F0 FF 01 00
+3.141592653589793E+00 '+M_PI' -> 18 2D 44 54 FB 21 19 00 02 00
-3.141592653589793E+00 '-M_PI' -> E8 D2 BB AB 04 DE E6 FF 02 00
+1.797693134862316E+308 '+DBL_MAX' -> FF FF FF FF FF FF 1F 00 00 04
-1.797693134862316E+308 '-DBL_MAX' -> 01 00 00 00 00 00 E0 FF 00 04
+INF '+INFINITY' -> FF FF FF FF FF FF FF 7F FF 7F
-INF '-INFINITY' -> 00 00 00 00 00 00 00 80 FF 7F
FF FF FF FF FF FF 1F 00 01 04 -> +INF
+1.112536929253601E-308 '+DBL_MIN / 2' -> 00 00 00 00 00 00 10 00 02 FC
-1.112536929253601E-308 '-DBL_MIN / 2' -> 00 00 00 00 00 00 F0 FF 02 FC
0 error(s)
浮点值使用与整数值相同的字节顺序恕我直言。使用联合将它们与相应的积分对应物重叠并使用常见的 hton 函数:
float htonf(float x) {
union foo {
float f;
uint32_t i;
} foo = { .f = x };
foo.i = htonl(foo.i);
return foo.f;
}
根据应用程序,使用纯文本数据格式(可能是 XML)可能是个好主意。如果你不想浪费磁盘空间,你可以压缩它。
XML 可能是最可移植的方式。
但是,您似乎已经构建了大部分解析器,但仍停留在浮点/双精度问题上。我建议把它写成一个字符串(达到你想要的任何精度),然后再读回来。
除非您的所有目标平台都使用 IEEE-754 浮点数(和双精度数),否则任何字节交换技巧都不适合您。
如果您保证您的实现始终以指定格式处理序列化浮点表示,那么您会没事的(IEEE 754 很常见)。
是的,架构可能会以不同的方式对浮点数进行排序(例如大端或小端)。因此,您将希望以某种方式指定字节顺序。这可以是格式的规范或变量,并记录在文件的数据中。
最后一个主要缺陷是内置函数的对齐方式可能会有所不同。您的硬件/处理器如何处理未对齐的数据是实现定义的。因此,您可能需要交换数据/字节,然后将其移动到目标float
/ double
。
正如高性能标记所说,像 HDF5 甚至 NetCDF 这样的库可能有点重量级,除非您还需要这些库中可用的其他功能。
仅处理序列化的轻量级替代方案是例如XDR(另请参见wikipedia description)。许多操作系统提供开箱即用的 XDR 例程,如果这还不够的话,还存在独立的 XDR 库。