0

有了prcomp()函数,我已经解释了估计的百分比方差

prcomp(env, scale=TRUE)

的第二列summary(pca)显示所有 PC 的这些值:

                        PC1    PC2     PC3     PC4     PC5     PC6     PC7
Standard deviation     7.3712 5.8731 2.04668 1.42385 1.13276 0.79209 0.74043
Proportion of Variance 0.5488 0.3484 0.04231 0.02048 0.01296 0.00634 0.00554
Cumulative Proportion  0.5488 0.8972 0.93956 0.96004 0.97300 0.97933 0.98487

现在我想找出每台 PC 的特征值是什么:

pca$sdev^2
[1] 5.433409e+01 3.449329e+01 4.188887e+00 2.027337e+00 1.283144e+00
[6] 6.274083e-01 5.482343e-01

但这些值似乎只是 PVE 本身的另一种表示。那么我在这里做错了什么?

4

1 回答 1

5

我不确定这是否是您的困惑。

pca$sdev^2 -> eigen values -> variance in each direction
pca$sdev^2/sum(pca$sdev^2) = proportion of variance vector

所以他们是相关的。

编辑:只是一个例子(说明这种关系),如果这会有所帮助。

set.seed(45) # for reproducibility
# set a matrix with each column sampled from a normal distribution
# with same mean but different variances
m <- matrix(c(rnorm(200,2, 10), rnorm(200,2,10), 
               rnorm(200,2,10), rnorm(200,2,10)), ncol=4)
pca <- prcomp(m)

> summary(pca) # note that the variances here equal that of input
# all columns are independent of each other, so each should explain
# equal amount of variance (which is the case here). all are ~ 25%
                           PC1     PC2     PC3    PC4
Standard deviation     10.9431 10.6003 10.1622 9.3200
Proportion of Variance  0.2836  0.2661  0.2446 0.2057
Cumulative Proportion   0.2836  0.5497  0.7943 1.0000

> pca$sdev^2
# [1] 119.75228 112.36574 103.27063  86.86322

> pca$sdev^2/sum(pca$sdev^2)
# [1] 0.2836039 0.2661107 0.2445712 0.2057142
于 2013-02-17T21:08:53.810 回答