我有一个时间序列的日内数据如下所示
ts =pd.Series(np.random.randn(60),index=pd.date_range('1/1/2000',periods=60, freq='2h'))
我希望将数据转换为 DataFrame,列作为每个日期,行作为日期中的时间。
这些我都试过了
key = lambda x:x.date()
grouped = ts.groupby(key)
但是如何将组转换为日期列 DataFrame?还是有更好的方法?
我有一个时间序列的日内数据如下所示
ts =pd.Series(np.random.randn(60),index=pd.date_range('1/1/2000',periods=60, freq='2h'))
我希望将数据转换为 DataFrame,列作为每个日期,行作为日期中的时间。
这些我都试过了
key = lambda x:x.date()
grouped = ts.groupby(key)
但是如何将组转换为日期列 DataFrame?还是有更好的方法?
import pandas as pd
import numpy as np
index = pd.date_range('1/1/2000', periods=60, freq='2h')
ts = pd.Series(np.random.randn(60), index = index)
key = lambda x: x.time()
groups = ts.groupby(key)
print pd.DataFrame({k:g for k,g in groups}).resample('D').T
出去:
2000-01-01 2000-01-02 2000-01-03 2000-01-04 2000-01-05 2000-01-06 \
00:00:00 0.109959 -0.124291 -0.137365 0.054729 -1.305821 -1.928468
03:00:00 1.336467 0.874296 0.153490 -2.410259 0.906950 1.860385
06:00:00 -1.172638 -0.410272 -0.800962 0.568965 -0.270307 -2.046119
09:00:00 -0.707423 1.614732 0.779645 -0.571251 0.839890 0.435928
12:00:00 0.865577 -0.076702 -0.966020 0.589074 0.326276 -2.265566
15:00:00 1.845865 -1.421269 -0.141785 0.433011 -0.063286 0.129706
18:00:00 -0.054569 0.277901 0.383375 -0.546495 -0.644141 -0.207479
21:00:00 1.056536 0.031187 -1.667686 -0.270580 -0.678205 0.750386
2000-01-07 2000-01-08
00:00:00 -0.657398 -0.630487
03:00:00 2.205280 -0.371830
06:00:00 -0.073235 0.208831
09:00:00 1.720097 -0.312353
12:00:00 -0.774391 NaN
15:00:00 0.607250 NaN
18:00:00 1.379823 NaN
21:00:00 0.959811 NaN