我以前发布过类似的问题,所以我提前道歉,但我只是无法在这里找到我哪里出错了。
我正在使用 C 中的 OpenSSL 的 BIGNUM 库实现 Shamir 秘密共享。
在我进行一轮拉格朗日插值之后,我乘以key * numerator
然后我需要除以分母。
因为没有BN_mod_div
函数,所以我改为BN_mod_inverse()
在分母上使用,然后相乘,如下所示:
(key * numerator) * (inverse of denominator)
我注意到的是,如果我使用BN_mod_inverse(denom, denom, q, ctx);
,那么应该反转的值保持不变:
Round Key: 2E
Numerator: 14
Denominator: 6 **<---- ORIGINAL DENOMINATOR**
Multiply key with numerator: 398 (POSITIVE)
Invert Denominator: 6 (POSITIVE) **<---------- INVERSE IS THE SAME???**
(Key*Numerator)*inv.Denom: 3FC (POSITIVE)
Round Key: 562
Numerator: A
Denominator: -2
Multiply key with numerator: 118 (POSITIVE)
Invert Denominator: -2 (NEGATIVE)
(Key*Numerator)*inv.Denom: 3AC (POSITIVE)
Round Key: 5D1
Numerator: 8
Denominator: 3
Multiply key with numerator: 584 (POSITIVE)
Invert Denominator: 3 (POSITIVE)
(Key*Numerator)*inv.Denom: 4D4 (POSITIVE)
Recovered Key: C4 (POSITIVE)
Key should = 4D2
如果我将其更改为BN_mod_inverse(newBN, denom, q, ctx);
它只会变成零:
Round Key: 2E
Numerator: 14
Denominator: 6 **<---- ORIGINAL DENOMINATOR**
Multiply key with numerator: 398 (POSITIVE)
Invert Denominator: 0 (NEGATIVE) **<------------ DENOMINATOR IS NOW ZERO??**
(Key*Numerator)*inv.Denom: 0 (NEGATIVE)
Round Key: 562
Numerator: A
Denominator: -2
Multiply key with numerator: 118 (POSITIVE)
Invert Denominator: 0 (NEGATIVE)
(Key*Numerator)*inv.Denom: 0 (NEGATIVE)
Round Key: 5D1
Numerator: 8
Denominator: 3
Multiply key with numerator: 584 (POSITIVE)
Invert Denominator: 0 (NEGATIVE)
(Key*Numerator)*inv.Denom: 0 (NEGATIVE)
Recovered Key: 0 (NEGATIVE)
Key should = 4D2
在任何一种情况下,组合键都是错误的。这里发生了什么?有解决方法吗?
这是我的代码:
BIGNUM *int2BN(int i)
{
BIGNUM *tmp = BN_new();
BN_zero(tmp);
int g;
if(i < 0) { //If 'i' is negative
for (g = 0; g > i; g--) {
BN_sub(tmp, tmp, one);
}
} else { //If 'i' is positive
for (g = 0; g < i; g++) {
BN_add(tmp, tmp, one);
}
}
return(tmp);
}
static void
blah() {
int denomTmp, numTmp, numAccum, denomAccum;
int s, j;
BIGNUM *accum[3], *bnNum, *bnDenom;
bnNum = BN_new();
bnDenom = BN_new();
/* Lagrange Interpolation */
for (s = 0; s < 3; s++) {
numAccum = 1;
denomAccum = 1;
for (j = 0; j < 3; j++) {
if(s == j) continue;
else {
/* 0 - i[k] = numTmp */
numTmp = 0 - key[j].keynum;
/* share - i[k] = denomTmp */
denomTmp = key[s].keynum - key[j].keynum;
/* Numerator accumulation: */
numAccum *= numTmp;
/* Denominator accumulation: */
denomAccum *= denomTmp;
}
}
accum[s] = BN_new();
bnNum = int2BN(numAccum);
bnDenom = int2BN(denomAccum);
/* Multiply result by share */
BN_mod_mul(accum[s], key[s].key, bnNum, q, ctx);
/* Invert denominator */
BN_mod_inverse(bnDenom, bnDenom, q, ctx);
/* Multiply by inverted denominator */
BN_mod_mul(accum[s], accum[s], bnDenom, q, ctx);
}
int a;
BIGNUM *total = BN_new();
BN_zero(total);
for(a = 0; a < 3; a++) {
BN_mod_add(total, total, accum[a], q, ctx);
}
}