3

我以前发布过类似的问题,所以我提前道歉,但我只是无法在这里找到我哪里出错了。

我正在使用 C 中的 OpenSSL 的 BIGNUM 库实现 Shamir 秘密共享。

在我进行一轮拉格朗日插值之后,我乘以key * numerator然后我需要除以分母。

因为没有BN_mod_div函数,所以我改为BN_mod_inverse()在分母上使用,然后相乘,如下所示:

(key * numerator) * (inverse of denominator)

我注意到的是,如果我使用BN_mod_inverse(denom, denom, q, ctx);,那么应该反转的值保持不变:

Round Key: 2E
Numerator: 14
Denominator: 6  **<---- ORIGINAL DENOMINATOR**
Multiply key with numerator: 398 (POSITIVE)
Invert Denominator: 6 (POSITIVE) **<---------- INVERSE IS THE SAME???**
(Key*Numerator)*inv.Denom: 3FC (POSITIVE)

Round Key: 562
Numerator: A
Denominator: -2
Multiply key with numerator: 118 (POSITIVE)
Invert Denominator: -2 (NEGATIVE)
(Key*Numerator)*inv.Denom: 3AC (POSITIVE)

Round Key: 5D1
Numerator: 8
Denominator: 3
Multiply key with numerator: 584 (POSITIVE)
Invert Denominator: 3 (POSITIVE)
(Key*Numerator)*inv.Denom: 4D4 (POSITIVE)
Recovered Key: C4 (POSITIVE)
Key should = 4D2

如果我将其更改为BN_mod_inverse(newBN, denom, q, ctx);它只会变成零:

Round Key: 2E
Numerator: 14
Denominator: 6 **<---- ORIGINAL DENOMINATOR**
Multiply key with numerator: 398 (POSITIVE)
Invert Denominator: 0 (NEGATIVE)  **<------------ DENOMINATOR IS NOW ZERO??**
(Key*Numerator)*inv.Denom: 0 (NEGATIVE)

Round Key: 562
Numerator: A
Denominator: -2
Multiply key with numerator: 118 (POSITIVE)
Invert Denominator: 0 (NEGATIVE)
(Key*Numerator)*inv.Denom: 0 (NEGATIVE)

Round Key: 5D1
Numerator: 8
Denominator: 3
Multiply key with numerator: 584 (POSITIVE)
Invert Denominator: 0 (NEGATIVE)
(Key*Numerator)*inv.Denom: 0 (NEGATIVE)
Recovered Key: 0 (NEGATIVE)
Key should = 4D2

在任何一种情况下,组合键都是错误的。这里发生了什么?有解决方法吗?

这是我的代码:

BIGNUM *int2BN(int i)
{   
    BIGNUM *tmp = BN_new();
    BN_zero(tmp);

    int g;
    if(i < 0) { //If 'i' is negative
        for (g = 0; g > i; g--) {
            BN_sub(tmp, tmp, one);
        }
    } else { //If 'i' is positive
        for (g = 0; g < i; g++) {
            BN_add(tmp, tmp, one);
        }
    }
    return(tmp);
}   

static void
blah() {
int denomTmp, numTmp, numAccum, denomAccum;
int s, j;   
BIGNUM *accum[3], *bnNum, *bnDenom;
bnNum = BN_new();
bnDenom = BN_new();

/* Lagrange Interpolation */
for (s = 0; s < 3; s++) {
    numAccum = 1;
    denomAccum = 1;
    for (j = 0; j < 3; j++) {
        if(s == j) continue;
        else {
            /* 0 - i[k] = numTmp */
            numTmp = 0 - key[j].keynum;

            /* share - i[k] = denomTmp */
            denomTmp = key[s].keynum - key[j].keynum;

            /* Numerator accumulation: */
            numAccum *= numTmp;

            /* Denominator accumulation: */
            denomAccum *= denomTmp;
        }
    }
    accum[s] = BN_new();
    bnNum = int2BN(numAccum);
    bnDenom = int2BN(denomAccum);

    /* Multiply result by share */
    BN_mod_mul(accum[s], key[s].key, bnNum, q, ctx);

    /* Invert denominator */
    BN_mod_inverse(bnDenom, bnDenom, q, ctx);

    /* Multiply by inverted denominator */
    BN_mod_mul(accum[s], accum[s], bnDenom, q, ctx);

}

int a;
BIGNUM *total = BN_new();
BN_zero(total);
for(a = 0; a < 3; a++) { 
    BN_mod_add(total, total, accum[a], q, ctx);
}   

}
4

1 回答 1

1

使用BN_div. 余数是模数。即,rem = a % d

int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, BN_CTX *ctx);

BN_div() divides a by d and places the result in dv and the remainder in rem
(dv=a/d, rem=a%d). Either of dv and rem may be NULL, in which case the respective
value is not returned. The result is rounded towards zero; thus if a is negative,
the remainder will be zero or negative. For division by powers of 2, use
BN_rshift(3). 
于 2013-10-02T09:17:01.480 回答