2

这一直让我发疯。我有一个 1D 块的 3D 网格。每个块包含 272 个线程。每个线程对两个向量进行点积,并将其结果存储在共享内存数组中的相应位置,该数组大小为 [272],线程数相同。主线程正在调用多个内核,我正在加起来执行它们所花费的时间。当我注释掉写入共享内存的行时,我得到大约 2,401 毫秒的执行时间。当我取消注释共享内存写入行时,我得到了非常长的时间,比如 450,309 毫秒。我尝试使用 int 值而不是双精度值。我还尝试使用 if(threadIdx.x ==0) 语句只让一个线程进行写入,以避免可能的银行冲突。似乎没有任何效果。这是调用线程代码:

  double theta=0;
int count=0;
cudaEventRecord(start,0);
while(theta <180)
{
theta+=0.18;

calc_LF<<<gridDim, blockDim>>>(ori_dev, X_dev, Y_dev, Z_dev, F_dev, F_grad_dev, g_oriD, r_vD, LF);
calc_S<<<gridDim, 272>>>(g_traD, LF, Ci, C);
count++;
}
cudaEventRecord( stop, 0 );
cudaEventSynchronize( stop );
cudaEventElapsedTime( &elapsedTime, start, stop );
err = cudaGetLastError();
if ( cudaSuccess != err )
    {
    fprintf( stderr, "Cuda error in file '%s' in line %i : %s.\n",
         __FILE__, __LINE__, cudaGetErrorString( err) );
    }
else
    {
    fprintf( stderr, "\n \n Cuda NO error in file '%s' in line %i : %s.\n",
         __FILE__, __LINE__, cudaGetErrorString( err) );
    printf("\n %d orientation updates: Total Time = %3.10f ms\n", count, elapsedTime);
    }

有问题的内核是 calc_S 内核,其代码是:

__global__ void calc_S(double* g_traD, double* LF, double* Ci, double* C)
{


__shared__ double G[H];
int myTRA[W];
int tx= threadIdx.x;

for(int j=0; j<W; j++)
{
    myTRA[j]= getElement(g_traD, tx, j, W);
}
double sum;
for(int j=0; j<W; j++)
{
     sum += myTRA[j] * LF[j];
}       

// Write your sum to shared memory
    G[threadIdx.x]=sum;
     //__syncthreads();
}

我正在使用带有 CUDA 4.2 的 MS Visual Studio 2008 和计算能力为 2.0 的 GPU(即 GeForce GTX 580)。注意:每个块 272 个线程。硬件线程限制:1,536 / 272 = 最多 5 个块 共享内存限制:双精度的 G[272] = 需要 2,176 个字节。48K / 2176= 最多 22 个块(这永远不会发生,但我们知道共享内存没有限制)寄存器根本不是问题。所以,应该是可以同时执行5个block。

谢谢你的帮助。

编辑:

这是整个代码的缩短版本。整个代码可以在 MatrixMul Nvidia SDK 示例中运行。

在文件“MatrixMul.cu”中

    int main(int argc, char** argv)
    {
    // reading data from Matlab into double arrays
    //CUDA begins here:
if(shrCheckCmdLineFlag(argc, (const char**)argv, "device"))
    {
      cutilDeviceInit(argc, argv);
     }
   else
   {
     cutilSafeCall( cudaSetDevice(cutGetMaxGflopsDeviceId()) );
   }
  int devID;
  cudaDeviceProp props;

// get GPU props
cutilSafeCall(cudaGetDevice(&devID));
cutilSafeCall(cudaGetDeviceProperties(&props, devID));

printf("Device %d: \"%s\" with Compute %d.%d capability\n", devID, props.name, props.major, props.minor);

//Declare Device memory for matrices read from Matlab
 double *X_dev;    // size 19 x 1
 double *Y_dev;    // size 19 x 1
 double *Z_dev;    // size 17 x 1
 double *r_vD;     // size 544 x 3
 double *g_oriD;   // size 544 x 3
 double *g_traD;   // size 272 x 544
 double *cov_D;    // size 272 x 272
 double *cov_i_D;  // size 272 x 272

err= cudaMalloc((void**)&X_dev, sizeX*sizeof(double));
errorCheck(err);

err= cudaMalloc((void**)&Y_dev, sizeY*sizeof(double));
errorCheck(err);

err= cudaMalloc((void**)&Z_dev, sizeZ*sizeof(double));
errorCheck(err);

err= cudaMalloc((void**)&r_vD, sizeR_V*sizeof(double));
errorCheck(err);

err= cudaMalloc((void**)&g_oriD, sizeG_ori*sizeof(double));
errorCheck(err);

err= cudaMalloc((void**)&g_traD, sizeG_tra*sizeof(double));
errorCheck(err);

err= cudaMalloc((void**)&cov_D, sizeCov*sizeof(double));
errorCheck(err); 

err= cudaMalloc((void**)&cov_i_D, sizeCov_i*sizeof(double));
errorCheck(err); 

   //Transfer Xs, Ys, and Zs to GPU Global memory
cudaMemcpy(X_dev,dipole_x_coords, sizeX*sizeof(double), cudaMemcpyHostToDevice);
errorCheck(err);

cudaMemcpy(Y_dev,dipole_y_coords, sizeY*sizeof(double), cudaMemcpyHostToDevice);
errorCheck(err);

cudaMemcpy(Z_dev,dipole_z_coords, sizeZ*sizeof(double), cudaMemcpyHostToDevice);
errorCheck(err);

    // Transfer r_v, g_ori, and g_tra to GPU memory
cudaMemcpy(r_vD, r_v, sizeR_V*sizeof(double), cudaMemcpyHostToDevice);
errorCheck(err);

cudaMemcpy(g_oriD,g_ori, sizeG_ori*sizeof(double), cudaMemcpyHostToDevice);
errorCheck(err);

cudaMemcpy(g_traD,g_tra, sizeG_tra*sizeof(double), cudaMemcpyHostToDevice);
    errorCheck(err);

    // Transfer cov, and cov_i to GPU memory
cudaMemcpy(cov_D, cov_post, sizeCov*sizeof(double), cudaMemcpyHostToDevice);
errorCheck(err);

cudaMemcpy(cov_i_D,cov_post_i, sizeCov_i*sizeof(double), cudaMemcpyHostToDevice);
  //Specify dimensions of block and grid
dim3 gridDim(sizeX, sizeY, sizeZ);   // 19 x 19 x 17
int numThreads=(int) sizeR_V/3;      // numThreads = 544
dim3 blockDim(numThreads,1,1);       // 544 x 1 x 1 

//call Cuda wrapper
float cf = runB(X_dev, Y_dev, Z_dev, r_vD, g_oriD, g_traD, cov_i_D, cov_D, blockDim, gridDim, sizeG_tra, tra_W, tra_H);

int c=0;
scanf("%d", c);
return 0;

}


    float runB(double* X_dev, double* Y_dev, double* Z_dev, 
double* r_vD, double* g_oriD, double* g_traD, double* Ci, double* C,
dim3 blockDim, dim3 gridDim, int sizeG_tra, int tra_W, int tra_H)
    {  
   cudaError err;

   // Calculate the size of thread output in global memory
   size_t size_F = gridDim.x * gridDim.y * gridDim.z * blockDim.x;
   size_t size_F_grad = gridDim.x * gridDim.y * gridDim.z * blockDim.x * 3;

   // Make global memory space for F and F_grad 
double* F_dev;
double* F_grad_dev;
err= cudaMalloc((void**)&F_dev, size_F*sizeof(double));
errorCheck(err); 
err= cudaMalloc((void**)&F_grad_dev, size_F_grad*sizeof(double));
errorCheck(err); 

    //Allocate Device memory for LF 
double *LF;
err= cudaMalloc((void**)&LF, 544*sizeof(double));
errorCheck(err); 

    cudaEvent_t start, stop;
    float elapsedTime;

    cudaEventCreate(&start);
    cudaEventCreate(&stop);

double theta=0;
cudaEventRecord(start,0);
while(theta <180)
{
theta+=0.18;
calc_LF<<<gridDim, blockDim>>>(ori_dev, X_dev, Y_dev, Z_dev, F_dev, F_grad_dev, g_oriD, r_vD, LF);
   calc_S<<<gridDim, 272>>>(g_traD, LF, Ci, C);
   count++;
   }
   cudaEventRecord( stop, 0 );
   cudaEventSynchronize( stop );
cudaEventElapsedTime( &elapsedTime, start, stop );
err = cudaGetLastError();
if ( cudaSuccess != err )
    {
    fprintf( stderr, "Cuda error in file '%s' in line %i : %s.\n",
         __FILE__, __LINE__, cudaGetErrorString( err) );
    }
else
    {
    fprintf( stderr, "\n \n Cuda NO error in file '%s' in line %i : %s.\n",
         __FILE__, __LINE__, cudaGetErrorString( err) );
    printf("\n 180 orientation updates: Total Time = %3.10f ms\n",elapsedTime);
    }
     return 0;

   }

在文件“MatrixMul_kernel.cu”中

     #define HDM_DIM 3 
      __global__ void calc_LF(double* ori_dev, double* X_dev, double* Y_dev, double* Z_dev, double* F_dev, double* F_grad_dev, 
                    double* g_oriD, double* r_vD, double* LF)
        { 
        // Get this block's global index 
     int blockId= blockIdx.x + gridDim.x*blockIdx.y + gridDim.x*gridDim.y*blockIdx.z;
     int tx= threadIdx.x;
    // This thread's global index
     int gtx= blockId*blockDim.x + threadIdx.x;
    double r_v[3];
    double g_ori[3];

// Each thread reads 1 row (3 values) of r_vD 
    r_v[0] = getElement(r_vD, tx, 0, HDM_DIM);
    r_v[1] = getElement(r_vD, tx, 1, HDM_DIM);
    r_v[2] = getElement(r_vD, tx, 2, HDM_DIM);
// Each thread reads 1 row (3 values) of g_oriD (which contains grad.ori data)
    g_ori[0] = getElement(g_oriD, tx, 0, HDM_DIM);
    g_ori[1] = getElement(g_oriD, tx, 1, HDM_DIM);
    g_ori[2] = getElement(g_oriD, tx, 2, HDM_DIM);

    //fetch d_ori from global memory
    double d_ori[3];
    for(int i=0; i< 3; i++){
       d_ori[i]= ori_dev[3*gtx+i];
    }   
   //read this block's X, Y, Z location
    double x= X_dev[blockIdx.x];
    double y= Y_dev[blockIdx.y];
    double z= Z_dev[blockIdx.z];     

    double c2[HDM_DIM];
    c2[0]= d_ori[1]*z - d_ori[2]*y;
    c2[1]= d_ori[2]*x - d_ori[0]*z;
    c2[2]= d_ori[0]*y - d_ori[1]*x;

    // Fetch F and F_grad from global memory
    double F = F_dev[gtx];
    double F_grad[3];
    for(int j=0; j<3; j++)
    {
        F_grad[j] = F_grad_dev[gtx*3+j];
    }


    double c1[HDM_DIM];
    c1[0]= F* c2[0];
    c1[1]= F* c2[1];
    c1[2]= F* c2[2];


    double d3= c2[0]*r_v[0] + c2[1]*r_v[1] + c2[2]*r_v[2];

    double s2[HDM_DIM];
    for(int j=0; j<HDM_DIM; j++)
    {
        s2[j] = d3*F_grad[j];
    }

    double s1[HDM_DIM];
    for(int j=0; j<HDM_DIM; j++)
    {
        s1[j] = c1[j] - s2[j];
    }

    double b_v[HDM_DIM];
    for(int j=0; j<HDM_DIM; j++)
    {
        b_v[j] = (10^-7)/(F*F) * s1[j]; 
    }   

    double sum=0;
    for(int j=0; j<HDM_DIM; j++)
    {
        sum += b_v[j]*g_ori[j];
    }   

// Write this thread's value to global memory
    LF[tx]= sum;

     }      

值得一提的是,这个 calc_LF 内核用于将其最终结果写入共享内存,这将执行时间从大约 500+ ms 增加到大约 2,500 ms(即仅共享内存写入行大约将时间乘以 5)。

    __global__ void calc_S(double* g_traD, double* LF, double* Ci, double* C)
{
__shared__ double T[H];
__shared__ double G[H];

   // Get this block's global index 
  int blockId= blockIdx.x + gridDim.x*blockIdx.y + gridDim.x*gridDim.y*blockIdx.z;
  int tx= threadIdx.x;
// This thread's global index
   int gtx= blockId*blockDim.x + threadIdx.x;

int myTRA[W];
double my_LF[W];
for (int i=0; i<W; i++){
   my_LF[i]= LF[gtx];
}

for(int j=0; j<W; j++){
    myTRA[j]= getElement(g_traD, tx, j, W);
        }
    double sum;
    for(int j=0; j<W; j++)
    {
         sum += myTRA[j] * my_LF[j];
    }       

// Write your sum to shared memory
    G[tx]=sum;
    __syncthreads();
      }
4

1 回答 1

1

您看到的效果是编译器优化的结果。获取基本内核代码的可编译版本:

#define H (128)
#define W (128)

__device__
double getElement(const double *g, int t, int j, int w)
{
    return g[t + j*w];
}

__global__ 
void calc_S(double* g_traD, double* LF, double* Ci, double* C)
{
    __shared__ double G[H];

    // Get this block's global index 
    int blockId= blockIdx.x + gridDim.x*blockIdx.y + 
                   gridDim.x*gridDim.y*blockIdx.z;
    int tx= threadIdx.x;
    // This thread's global index
    int gtx= blockId*blockDim.x + threadIdx.x;

    int myTRA[W];
    double my_LF[W];
    for (int i=0; i<W; i++){
        my_LF[i]= LF[gtx];
    }

    for(int j=0; j<W; j++){
        myTRA[j]= getElement(g_traD, tx, j, W);
    }
    double sum;
    for(int j=0; j<W; j++)
    {
        sum += myTRA[j] * my_LF[j];
    }       

    // Write your sum to shared memory
    G[tx]=sum;
    __syncthreads();
}

并用 CUDA 5 编译它给出了这个:

$ nvcc -m64 -arch=sm_20 -cubin -Xptxas="-v"  dead_code.cu 
dead_code.cu(13): warning: variable "G" was set but never used

dead_code.cu(13): warning: variable "G" was set but never used

ptxas info    : 0 bytes gmem
ptxas info    : Compiling entry function '_Z6calc_SPdS_S_S_' for 'sm_20'
ptxas info    : Function properties for _Z6calc_SPdS_S_S_
    1536 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info    : Used 23 registers, 1024 bytes smem, 64 bytes cmem[0]

有一个关于共享内存变量G没有被使用的警告,但编译器尊重它并发出消耗 23 个寄存器的代码。所以现在,如果我注释掉G[tx]=sum内核末尾的 ,它会像这样编译:

$ nvcc -m64 -arch=sm_20 -cubin -Xptxas="-v"  dead_code.cu 
dead_code.cu(13): warning: variable "G" was declared but never referenced

dead_code.cu(13): warning: variable "G" was declared but never referenced

ptxas info    : 0 bytes gmem
ptxas info    : Compiling entry function '_Z6calc_SPdS_S_S_' for 'sm_20'
ptxas info    : Function properties for _Z6calc_SPdS_S_S_
    0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info    : Used 2 registers, 64 bytes cmem[0]

现在只使用了两个寄存器,工具链发出了这个:

$ cuobjdump -sass dead_code.cubin 

    code for sm_20
        Function : _Z6calc_SPdS_S_S_
    /*0000*/     /*0x00005de428004404*/     MOV R1, c [0x1] [0x100];
    /*0008*/     /*0xfc1fdc03207e0000*/     IMAD.U32.U32 RZ, R1, RZ, RZ;
    /*0010*/     /*0xffffdc0450ee0000*/     BAR.RED.POPC RZ, RZ;
    /*0018*/     /*0x00001de780000000*/     EXIT;

IE。四个组装说明。你所有的代码都不见了。

这种影响的根本来源是编译器死代码删除。编译器足够聪明,可以确定对全局或共享内存输出没有影响的代码是不需要的并且可以删除。在这种情况下,一个写入G被删除,整个内核实际上是没有意义的,编译器只是优化了整个事情。您可以在此处此处查看其他一些死代码删除及其影响的示例。后者在 OpenCL 中,但同样的机制也适用。

于 2013-02-14T06:51:19.437 回答