3

我可以通过普通函数和递归函数打印 LIS 的长度。但我想在 C++ 中的给定数组中打印 LIS 子序列的索引。

这是我查找 LIS 长度的函数:

int lis( int *arr, int n )
{
   int *lis, i, j, max = 0;
   lis = (int*) malloc ( sizeof( int ) * n );
   for ( i = 0; i < n; i++ )
      lis[i] = 1;
   for ( i = 1; i < n; i++ )
      for ( j = 0; j < i; j++ )
         if ( arr[i] > arr[j] && lis[i] < lis[j] + 1)
            lis[i] = lis[j] + 1;
   for ( i = 0; i < n; i++ )
      if ( max < lis[i] )
         max = lis[i];
   /* Free memory to avoid memory leak */
   free( lis );
   return max;
}

这里array[10]={7 6 2 3 4 1 8 5 9 10}

这里LIS Length=6

我想打印数字的索引{2 3 4 6 8 9}(它不是它的数组索引,我想打印的序列)array[10]

4

7 回答 7

11

在为每个索引计算 lis 后,取一个等于 max 的 tmp 值,在 lis 数组上倒退,每次找到等于 max 的元素时,将该索引添加到答案并减少 tmp。因此,您将以相反的顺序获得索引数组。

示例代码:

int tmp = max;
std::vector<int> indexes;
for( i = n - 1; i >= 0; --i )
   if( lis[ i ] == tmp )
   {
      indexes.push_back( i );
      --tmp;
   }
std::reverse( indexes.begin(), indexes.end());
于 2013-02-11T07:44:15.163 回答
1

要按顺序打印,您可以使用递归方法:调用: printLIS(lis, lis.length -1, arr, max)

public static void printLIS(int[] lis, int lisIndex, int[] arr, int max) {
    if(max == 0) {
        return;
    }
    if(lis[lisIndex] == max) {
        printLis(lis,lisIndex-1, arr, max-1);
        System.out.print(arr[lisIndex] + " ");
    } else {
        printLis(lis,lisIndex-1, arr, max);
    }

}
于 2014-02-19T21:17:26.453 回答
1
void solution() {
  int n;
  cin >> n;
  vector<int> v(n);
  for (int &x : v) cin >> x;
  vector<int> dp(n, 1);
  int i = 0, j = 1;
  vector<int> par(n);
  for (int i = 0; i < n; i++) {
     par[i] = i;
  }
  for (int j = 1; j < n; j++) {
     for (int i = 0; i < j; i++) {
        if (v[j] > v[i] && dp[j] < dp[i] + 1) {
           dp[j] = dp[i] + 1;
           par[j] = i;
        }
     }
  }
  int mx = 1, idx = 0;
  for (int i = 0; i < n; i++) {
     if (dp[i] > mx) {
        mx = dp[i];
        idx = i;
     }
  }
  cout << mx << "\n";
  vector<int> seq;
  while (true) {
     seq.pb(v[idx]);
     if (par[idx] == idx) break;
     idx = par[idx];
  }
  reverse(seq.begin(), seq.end());
  for (int i = 0; i < mx; i++) {
     cout << seq[i] << " ";
  }
}

维护一个父数组并从 LIS 以父节点结束的索引向后退,直到到达 parent[index] = index 的索引。

于 2020-07-20T16:12:37.770 回答
0
int lis( int *arr, int n )
{
   int *lis, i, j, max = 0, max_index = 0;
   int *print = (int*)malloc(sizeof(int)*n);
   lis = (int*) malloc ( sizeof( int ) * n );
   for ( i = 0; i < n; i++ ){
      lis[i] = 1;
        print[i] = -1
    }
   for ( i = 1; i < n; i++ )
      for ( j = 0; j < i; j++ )
         if ( arr[i] > arr[j] && lis[i] < lis[j] + 1){
            lis[i] = lis[j] + 1;
            print[i] = j;
        }
   for ( i = 0; i < n; i++ ){
      if ( max < lis[i] ){
         max = lis[i];
        max_index = i;
      }
    }
    while(max_index >=0){
        printf("%d ",lis[max_inc_index]);
        max_index = print[max_index];
    }
   /* Free memory to avoid memory leak */
   free( lis );

   return max;
}

使用一个额外的数组来跟踪索引,这是最长子序列的一部分,然后遍历数组以打印所有相应的元素。

于 2015-07-16T12:33:48.600 回答
0

如果有人对 Java 版本感兴趣。评论解释。

   public int lengthOfLIS(int[] nums) {
    if(nums.length == 0) return 0;
    // array to store sub-problem solution. L[i] stores the length
    // of the longest increasing sub-sequence ends with nums[i]
    int[] L = new int[nums.length];
    // used to print the actual LIS
    int[] P = new int[nums.length];

    // longest increasing sub-sequence having just one element has length 1
    Arrays.fill(L, 1);
    Arrays.fill(P, -1);

    // start from second element in the array
    for(int i=1; i<nums.length; i++) {

        // do for each element in sub-array nums[0..i-1]
        for(int j=0; j<i; j++) {
            // find longest increasing sub-sequence that ends with nums[j]
            // where nums[j] is less than the current element nums[i]
            // and it extends the original sub-sequence increasingly
            if(nums[j] < nums[i] && L[i] < L[j]+1) {
                L[i] = L[j] + 1;
                // store what index helped to extend L[i] 
                P[i] = j;
            }
        }
    }
     /* find the maximum LIS from L calculated also its index */
    int max=L[0], maxIndex=0;
    for(int i=1; i<nums.length; i++) {
        if(max<L[i]) {
            max=L[i];
            maxIndex=i;
        }
    }
    //starting from index of max-length LIS traverse back 
    //using P array populated earlier
    while (maxIndex >= 0) {
        System.out.print(nums[maxIndex]+", ");
        maxIndex = P[maxIndex];
    }
    return max;
}
于 2020-08-01T18:00:43.190 回答
0

不是最好的方法,但你可以试试...

int lis(int ar[], int n) {

int max = INT_MIN;
int* lis = new int[n];
int* sub_arr = new int[n];

for (int i = 0; i < n; ++i)
    lis[i] = 1;

for (int i = 1; i < n; ++i) {
    for (int j = 0; j < n; ++j) {
        if(ar[i] > ar[j] && lis[j] + 1 >= lis[i]) {
            lis[i] = lis[j] + 1;
            sub_arr[i] = j;
        }
    }
}

for (int i = 0; i < n; ++i) {
    if(max < lis[i])
        max = ar[i];
}

int k = 0;
stack <int> st;
for (int i = 0; i < n; ++i) {
    if(max == lis[i])
        k = i;
}

cout << "Longest Incresing Subsequence : ";

st.push(k);
while(k > 0) {
    st.push(sub_arr[k]);
    k = sub_arr[k];
}

while (!st.empty()) {
    cout << ar[st.top()] << ' ';
    st.pop();
}
cout << endl;

return max;
}
于 2019-08-10T06:50:19.970 回答
0

可以声明动态数组,其长度等于递增序列的最大长度。数组 ANS 将保持最长的递增序列。

int *ans=(int*)malloc(sizeof(int)*max);

临时变量用于保持数组中最大长度的索引。

    int index;
    int length; //used to fill array ANS in reverse order.
    for ( i = 0; i < n; i++ )
      {
          if ( max < lis[i] )
          {
              max = lis[i];
              index=i;
          }
      }
    length=max;
    ans[length-1]=arr[index];  //filling array from the last
                               //last element will be the greatest element
    length--;
    while(index>0)
    {
        for(i=index-1;i>=0;i--)
        {
            if(lis[i]+1==lis[index] && arr[i]<arr[index])
            {
                ans[length-1]=arr[i]; 
                index=i;
                length--;
                break;
            }
        }
    }
    for(i=0;i<max;i++)
    {
        printf("%d",ans[i]);
    }

这里的复杂度是 O(n) 而不是 O(n2),即使它可能使用两个循环,因为只要输入块,我们就会将 index 的值更改为 i。

于 2017-03-14T15:29:52.553 回答