你可能会觉得我的解决方案很有趣。它是 Coherent Point Drift 算法的纯 numpy实现。
这是一个例子:
from functools import partial
from scipy.io import loadmat
import matplotlib.pyplot as plt
import numpy as np
import time
class RigidRegistration(object):
def __init__(self, X, Y, R=None, t=None, s=None, sigma2=None, maxIterations=100, tolerance=0.001, w=0):
if X.shape[1] != Y.shape[1]:
raise 'Both point clouds must have the same number of dimensions!'
self.X = X
self.Y = Y
(self.N, self.D) = self.X.shape
(self.M, _) = self.Y.shape
self.R = np.eye(self.D) if R is None else R
self.t = np.atleast_2d(np.zeros((1, self.D))) if t is None else t
self.s = 1 if s is None else s
self.sigma2 = sigma2
self.iteration = 0
self.maxIterations = maxIterations
self.tolerance = tolerance
self.w = w
self.q = 0
self.err = 0
def register(self, callback):
self.initialize()
while self.iteration < self.maxIterations and self.err > self.tolerance:
self.iterate()
callback(X=self.X, Y=self.Y)
return self.Y, self.s, self.R, self.t
def iterate(self):
self.EStep()
self.MStep()
self.iteration = self.iteration + 1
def MStep(self):
self.updateTransform()
self.transformPointCloud()
self.updateVariance()
def updateTransform(self):
muX = np.divide(np.sum(np.dot(self.P, self.X), axis=0), self.Np)
muY = np.divide(np.sum(np.dot(np.transpose(self.P), self.Y), axis=0), self.Np)
self.XX = self.X - np.tile(muX, (self.N, 1))
YY = self.Y - np.tile(muY, (self.M, 1))
self.A = np.dot(np.transpose(self.XX), np.transpose(self.P))
self.A = np.dot(self.A, YY)
U, _, V = np.linalg.svd(self.A, full_matrices=True)
C = np.ones((self.D, ))
C[self.D-1] = np.linalg.det(np.dot(U, V))
self.R = np.dot(np.dot(U, np.diag(C)), V)
self.YPY = np.dot(np.transpose(self.P1), np.sum(np.multiply(YY, YY), axis=1))
self.s = np.trace(np.dot(np.transpose(self.A), self.R)) / self.YPY
self.t = np.transpose(muX) - self.s * np.dot(self.R, np.transpose(muY))
def transformPointCloud(self, Y=None):
if not Y:
self.Y = self.s * np.dot(self.Y, np.transpose(self.R)) + np.tile(np.transpose(self.t), (self.M, 1))
return
else:
return self.s * np.dot(Y, np.transpose(self.R)) + np.tile(np.transpose(self.t), (self.M, 1))
def updateVariance(self):
qprev = self.q
trAR = np.trace(np.dot(self.A, np.transpose(self.R)))
xPx = np.dot(np.transpose(self.Pt1), np.sum(np.multiply(self.XX, self.XX), axis =1))
self.q = (xPx - 2 * self.s * trAR + self.s * self.s * self.YPY) / (2 * self.sigma2) + self.D * self.Np/2 * np.log(self.sigma2)
self.err = np.abs(self.q - qprev)
self.sigma2 = (xPx - self.s * trAR) / (self.Np * self.D)
if self.sigma2 <= 0:
self.sigma2 = self.tolerance / 10
def initialize(self):
self.Y = self.s * np.dot(self.Y, np.transpose(self.R)) + np.repeat(self.t, self.M, axis=0)
if not self.sigma2:
XX = np.reshape(self.X, (1, self.N, self.D))
YY = np.reshape(self.Y, (self.M, 1, self.D))
XX = np.tile(XX, (self.M, 1, 1))
YY = np.tile(YY, (1, self.N, 1))
diff = XX - YY
err = np.multiply(diff, diff)
self.sigma2 = np.sum(err) / (self.D * self.M * self.N)
self.err = self.tolerance + 1
self.q = -self.err - self.N * self.D/2 * np.log(self.sigma2)
def EStep(self):
P = np.zeros((self.M, self.N))
for i in range(0, self.M):
diff = self.X - np.tile(self.Y[i, :], (self.N, 1))
diff = np.multiply(diff, diff)
P[i, :] = P[i, :] + np.sum(diff, axis=1)
c = (2 * np.pi * self.sigma2) ** (self.D / 2)
c = c * self.w / (1 - self.w)
c = c * self.M / self.N
P = np.exp(-P / (2 * self.sigma2))
den = np.sum(P, axis=0)
den = np.tile(den, (self.M, 1))
den[den==0] = np.finfo(float).eps
self.P = np.divide(P, den)
self.Pt1 = np.sum(self.P, axis=0)
self.P1 = np.sum(self.P, axis=1)
self.Np = np.sum(self.P1)
def visualize(X, Y, ax):
plt.cla()
ax.scatter(X[:,0] , X[:,1], color='red')
ax.scatter(Y[:,0] , Y[:,1], color='blue')
plt.draw()
plt.pause(0.001)
def main():
fish = loadmat('./data/fish.mat')
X = fish['X'] # number-of-points x number-of-dimensions array of fixed points
Y = fish['Y'] # number-of-points x number-of-dimensions array of moving points
fig = plt.figure()
fig.add_axes([0, 0, 1, 1])
callback = partial(visualize, ax=fig.axes[0])
reg = RigidRegistration(X, Y)
reg.register(callback)
plt.show()
if __name__ == '__main__':
main()