我想在我给出的范围内获得随机数,但我不想使用 Java 的随机库或任何我必须初始化的东西。
有谁知道在不使用 java 库的情况下获取随机数的另一种方法?
谢谢
编辑:您如何看待这个解决方案?
int random = i + (int)(System.currentTimeMillis()%((j - i) + 1));
其中 i 和 j 是范围
您必须实现自己的伪随机数生成算法,这实际上是在重新发明轮子,而且不安全!
另一种解决方案是使用生成真正随机数的服务,例如 Random.org
我了解到生成最多随机数的最佳方法是使用 Mersenne Twister 随机数生成器。该生成器将为您提供足够的随机数,无需重新设置种子,它的周期为 (2^19937) - 1
这是 MerseenTwister 的源代码
这是一个生成随机数的类。
class RandomVariable {
/** Initialize Mersenne Twister generator. */
private static MersenneTwister rnd = new MersenneTwister();
public static double rand() {
return rnd.nextDouble();
}
/** Generate a random number from a uniform random variable.
*
* @param min Mininum value for the random variable.
* @param max Maximum value for the random variable.
*
* @return A random double between min and max.
*/
public static double uniform(double min, double max) {
return min + (max - min) * rand();
}
}
这是一个生成随机数的示例。请注意,我从源中删除了评论。这可能会破坏代码的开源性质,但我无法将其全部复制并格式化为代码。
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
public class sample{
public static void main(String args[]){
RandomVariable gen = new RandomVariable();
double num = gen.uniform(-1,1);
int n = 10000;
Set<Double> nums = new HashSet<Double>();
while (numbers.size() < n)
nums.add(gen.uniform(-1,1));
}
}
class RandomVariable {
/** Initialize Mersenne Twister generator. */
private static MersenneTwister rnd = new MersenneTwister();
public static double rand() {
return rnd.nextDouble();
}
/** Generate a random number from a uniform random variable.
*
* @param min Mininum value for the random variable.
* @param max Maximum value for the random variable.
*
* @return A random double between min and max.
*/
public static double uniform(double min, double max) {
return min + (max - min) * rand();
}
}
class MersenneTwister extends java.util.Random implements Serializable {
// Period parameters
private static final int N = 624;
private static final int M = 397;
private static final int MATRIX_A = 0x9908b0df; // private static final
//* constant vector a
private static final int UPPER_MASK = 0x80000000; // most significant
// w-r bits
private static final int LOWER_MASK = 0x7fffffff; // least significant
// r bits
// Tempering parameters
private static final int TEMPERING_MASK_B = 0x9d2c5680;
private static final int TEMPERING_MASK_C = 0xefc60000;
private int mt[]; // the array for the state vector
private int mti; // mti==N+1 means mt[N] is not initialized
private int mag01[];
// a good initial seed (of int size, though stored in a long)
// private static final long GOOD_SEED = 4357;
/* implemented here because there's a bug in Random's implementation
of the Gaussian code (divide by zero, and log(0), ugh!), yet its
gaussian variables are private so we can't access them here. :-( */
private double __nextNextGaussian;
private boolean __haveNextNextGaussian;
/**
* Constructor using the default seed.
*/
public MersenneTwister() {
this(System.currentTimeMillis());
}
/**
* Constructor using a given seed. Though you pass this seed in
* as a long, it's best to make sure it's actually an integer.
*/
public MersenneTwister(final long seed) {
super(seed); /* just in case */
setSeed(seed);
}
/**
* Constructor using an array.
*/
public MersenneTwister(final int[] array) {
super(System.currentTimeMillis());
/* pick something at random just in case */
setSeed(array);
}
/**
* Initalize the pseudo random number generator. Don't
* pass in a long that's bigger than an int (Mersenne Twister
* only uses the first 32 bits for its seed).
*/
synchronized public void setSeed(final long seed) {
// it's always good style to call super
super.setSeed(seed);
// Due to a bug in java.util.Random clear up to 1.2, we're
// doing our own Gaussian variable.
__haveNextNextGaussian = false;
mt = new int[N];
mag01 = new int[2];
mag01[0] = 0x0;
mag01[1] = MATRIX_A;
mt[0] = (int) (seed & 0xfffffff);
for (mti = 1; mti < N; mti++) {
mt[mti] =
(1812433253 * (mt[mti - 1] ^ (mt[mti - 1] >>> 30)) + mti);
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
/* In the previous versions, MSBs of the seed affect */
/* only MSBs of the array mt[]. */
/* 2002/01/09 modified by Makoto Matsumoto */
mt[mti] &= 0xffffffff;
/* for >32 bit machines */
}
}
/**
* An alternative, more complete, method of seeding the
* pseudo random number generator. array must be an
* array of 624 ints, and they can be any value as long as
* they're not *all* zero.
*/
synchronized public void setSeed(final int[] array) {
int i, j, k;
setSeed(19650218);
i = 1;
j = 0;
k = (N > array.length ? N : array.length);
for (; k != 0; k--) {
mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >>> 30)) * 1664525))
+ array[j] + j; /* non linear */
mt[i] &= 0xffffffff; /* for WORDSIZE > 32 machines */
i++;
j++;
if (i >= N) {
mt[0] = mt[N - 1];
i = 1;
}
if (j >= array.length) {
j = 0;
}
}
for (k = N - 1; k != 0; k--) {
mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >>> 30)) * 1566083941))
- i; /* non linear */
mt[i] &= 0xffffffff; /* for WORDSIZE > 32 machines */
i++;
if (i >= N) {
mt[0] = mt[N - 1];
i = 1;
}
}
mt[0] = 0x80000000; /* MSB is 1; assuring non-zero initial array */
}
/**
* Returns an integer with <em>bits</em> bits filled with a random number.
*/
synchronized protected int next(final int bits) {
int y;
if (mti >= N) // generate N words at one time
{
int kk;
final int[] mt = this.mt; // locals are slightly faster
final int[] mag01 = this.mag01; // locals are slightly faster
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
return y >>> (32 - bits); // hope that's right!
}
/* If you've got a truly old version of Java, you can omit these
two next methods. */
private synchronized void writeObject(final ObjectOutputStream out)
throws IOException {
// just so we're synchronized.
out.defaultWriteObject();
}
private synchronized void readObject(final ObjectInputStream in)
throws IOException, ClassNotFoundException {
// just so we're synchronized.
in.defaultReadObject();
}
/** This method is missing from jdk 1.0.x and below. JDK 1.1
includes this for us, but what the heck.*/
public boolean nextBoolean() {
return next(1) != 0;
}
/** This generates a coin flip with a probability <tt>probability</tt>
of returning true, else returning false. <tt>probability</tt> must
be between 0.0 and 1.0, inclusive. Not as precise a random real
event as nextBoolean(double), but twice as fast. To explicitly
use this, remember you may need to cast to float first. */
public boolean nextBoolean(final float probability) {
if (probability < 0.0f || probability > 1.0f) {
throw new IllegalArgumentException("probability must be between 0.0"
+ " and 1.0 inclusive.");
}
if (probability == 0.0f) {
return false; // fix half-open issues
} else if (probability == 1.0f) {
return true; // fix half-open issues
}
return nextFloat() < probability;
}
/** This generates a coin flip with a probability <tt>probability</tt>
of returning true, else returning false. <tt>probability</tt> must
be between 0.0 and 1.0, inclusive. */
public boolean nextBoolean(final double probability) {
if (probability < 0.0 || probability > 1.0) {
throw new IllegalArgumentException("probability must be between 0.0"
+ " and 1.0 inclusive.");
}
if (probability == 0.0) {
return false; // fix half-open issues
} else if (probability == 1.0) {
return true; // fix half-open issues
}
return nextDouble() < probability;
}
/** This method is missing from JDK 1.1 and below. JDK 1.2
includes this for us, but what the heck. */
public int nextInt(final int n) {
if (n <= 0) {
throw new IllegalArgumentException("n must be >= 0");
}
if ((n & -n) == n) {
return (int) ((n * (long) next(31)) >> 31);
}
int bits, val;
do {
bits = next(31);
val = bits % n;
} while (bits - val + (n - 1) < 0);
return val;
}
/** This method is for completness' sake.
Returns a long drawn uniformly from 0 to n-1. Suffice it to say,
n must be > 0, or an IllegalArgumentException is raised. */
public long nextLong(final long n) {
if (n <= 0) {
throw new IllegalArgumentException("n must be >= 0");
}
long bits, val;
do {
bits = (nextLong() >>> 1);
val = bits % n;
} while (bits - val + (n - 1) < 0);
return val;
}
/** A bug fix for versions of JDK 1.1 and below. JDK 1.2 fixes
this for us, but what the heck. */
public double nextDouble() {
return (((long) next(26) << 27) + next(27))
/ (double) (1L << 53);
}
/** A bug fix for versions of JDK 1.1 and below. JDK 1.2 fixes
this for us, but what the heck. */
public float nextFloat() {
return next(24) / ((float) (1 << 24));
}
/** A bug fix for all versions of the JDK. The JDK appears to
use all four bytes in an integer as independent byte values!
Totally wrong. I've submitted a bug report. */
public void nextBytes(final byte[] bytes) {
for (int x = 0; x < bytes.length; x++) {
bytes[x] = (byte) next(8);
}
}
/** For completeness' sake, though it's not in java.util.Random. */
public char nextChar() {
// chars are 16-bit UniCode values
return (char) (next(16));
}
/** For completeness' sake, though it's not in java.util.Random. */
public short nextShort() {
return (short) (next(16));
}
/** For completeness' sake, though it's not in java.util.Random. */
public byte nextByte() {
return (byte) (next(8));
}
/** A bug fix for all JDK code including 1.2. nextGaussian can theoretical
* ly
ask for the log of 0 and divide it by 0! See Java bug
<a href="http://developer.java.sun.com/developer/bugParade/bugs/4254501.h
* tml">
http://developer.java.sun.com/developer/bugParade/bugs/4254501.html</a>
*/
synchronized public double nextGaussian() {
if (__haveNextNextGaussian) {
__haveNextNextGaussian = false;
return __nextNextGaussian;
} else {
double v1, v2, s;
do {
v1 = 2 * nextDouble() - 1; // between -1.0 and 1.0
v2 = 2 * nextDouble() - 1; // between -1.0 and 1.0
s = v1 * v1 + v2 * v2;
} while (s >= 1 || s == 0);
double multiplier = /* Strict*/ Math.sqrt(-2
* /* Strict*/ Math.log(s) / s);
__nextNextGaussian = v2 * multiplier;
__haveNextNextGaussian = true;
return v1 * multiplier;
}
}
}
java.lang.math中有一个默认的随机方法。
它返回一个介于 0.0 和 1.0 (0.0 <= n < 1.0) 之间的双精度值。
您可以做一些简单的技巧将其转换为各种随机值:
boolean coinFlip = (Math.random() >= 0.5);
int card = (int)(Math.random() * 52);
但是,这会在幕后创建一个新的 java.util.Random() ,我认为您正试图避免这种情况。
如果您不想使用任何库,那么您必须自己实现,这可能最终会变得更加复杂。
您提到使用时间,这当然可以用于生成数字,但对于任何实际目的,它并不是真正随机的。就像是:
long betweenOneAndTen = 1 + (System.currentTimeMillis() % 10);
如果你使用这个Math.random()
函数,你就不会依赖Random
类,也不会初始化任何东西(至少这不是你的责任)。System.currentTimeMillis()
调用,System.nanoTime()
和---之间没有根本区别,Math.random()
只是后者性能更高,并且更擅长返回随机值。