23

我需要python解决方案。

我有 40-60 张图片(Happy Holiday 集)。我需要检测所有这些图像上的对象。

我不知道对象大小、形式、图像上的位置,我没有任何对象模板。我只知道一件事:这个物体几乎存在于所有图像中。我称它为不明飞行物。

例子: 在此处输入图像描述 在此处输入图像描述 在此处输入图像描述 在此处输入图像描述

如示例所示,从图像到图像,除了 UFO 之外,一切都发生了变化。检测后我需要得到:

左上角的X坐标

左上角的Y坐标

蓝色对象区域的宽度(我在示例中将区域标记为红色矩形)

蓝色对象区域的高度

4

2 回答 2

31

当您将图像数据作为数组时,您可以使用内置的 numpy 函数轻松快速地执行此操作:

import numpy as np
import PIL

image = PIL.Image.open("14767594_in.png")

image_data = np.asarray(image)
image_data_blue = image_data[:,:,2]

median_blue = np.median(image_data_blue)

non_empty_columns = np.where(image_data_blue.max(axis=0)>median_blue)[0]
non_empty_rows = np.where(image_data_blue.max(axis=1)>median_blue)[0]

boundingBox = (min(non_empty_rows), max(non_empty_rows), min(non_empty_columns), max(non_empty_columns))

print boundingBox

将为您提供第一张图片:

(78, 156, 27, 166)

所以你想要的数据是:

  • 左上角是 (x,y):(27, 78)
  • 宽度:166 - 27 = 139
  • 高度:156 - 78 = 78

我选择了“每个蓝色值大于所有蓝色值中值的像素”属于您的对象。我希望这对你有用;如果没有,请尝试其他方法或提供一些不起作用的示例。

编辑 我修改了我的代码以使其更通用。由于两个具有相同形状颜色的图像不够通用(如您的评论所示),我综合创建了更多样本。

def create_sample_set(mask, N=36, shape_color=[0,0,1.,1.]):
    rv = np.ones((N, mask.shape[0], mask.shape[1], 4),dtype=np.float)
    mask = mask.astype(bool)
    for i in range(N):
        for j in range(3):
            current_color_layer = rv[i,:,:,j]
            current_color_layer[:,:] *= np.random.random()
            current_color_layer[mask] = np.ones((mask.sum())) * shape_color[j]
    return rv

在这里,形状的颜色是可调的。对于 N=26 图像中的每一个,选择随机背景颜色。也可以在背景中加入噪音,这不会改变结果。

然后,我阅读了您的示例图像,从中创建了一个形状蒙版并使用它来创建示例图像。我将它们绘制在网格上。

# create set of sample image and plot them
image = PIL.Image.open("14767594_in.png")
image_data = np.asarray(image)
image_data_blue = image_data[:,:,2]
median_blue = np.median(image_data_blue)
sample_images = create_sample_set(image_data_blue>median_blue)
plt.figure(1)
for i in range(36):
    plt.subplot(6,6,i+1)
    plt.imshow(sample_images[i,...])
    plt.axis("off")
plt.subplots_adjust(0,0,1,1,0,0)

蓝色形状

对于shape_color(parameter to create_sample_set(...)) 的另一个值,这可能如下所示:

绿色形状

接下来,我将使用标准偏差确定每个像素的可变性。正如您所说,该对象(几乎)位于同一位置的所有图像上。所以这些图像中的可变性会很低,而对于其他像素,它会明显更高。

# determine per-pixel variablility, std() over all images
variability = sample_images.std(axis=0).sum(axis=2)

# show image of these variabilities
plt.figure(2)
plt.imshow(variability, cmap=plt.cm.gray, interpolation="nearest", origin="lower")

最后,就像在我的第一个代码片段中一样,确定边界框。现在我也提供它的情节。

# determine bounding box
mean_variability = variability.mean()
non_empty_columns = np.where(variability.min(axis=0)<mean_variability)[0]
non_empty_rows = np.where(variability.min(axis=1)<mean_variability)[0]
boundingBox = (min(non_empty_rows), max(non_empty_rows), min(non_empty_columns), max(non_empty_columns))

# plot and print boundingBox
bb = boundingBox
plt.plot([bb[2], bb[3], bb[3], bb[2], bb[2]],
         [bb[0], bb[0],bb[1], bb[1], bb[0]],
         "r-")
plt.xlim(0,variability.shape[1])
plt.ylim(variability.shape[0],0)

print boundingBox
plt.show()

BoundingBox 和提取的形状

就是这样。我希望这次足够笼统。

复制和粘贴的完整脚本:

import numpy as np
import PIL
import matplotlib.pyplot as plt


def create_sample_set(mask, N=36, shape_color=[0,0,1.,1.]):
    rv = np.ones((N, mask.shape[0], mask.shape[1], 4),dtype=np.float)
    mask = mask.astype(bool)
    for i in range(N):
        for j in range(3):
            current_color_layer = rv[i,:,:,j]
            current_color_layer[:,:] *= np.random.random()
            current_color_layer[mask] = np.ones((mask.sum())) * shape_color[j]
    return rv

# create set of sample image and plot them
image = PIL.Image.open("14767594_in.png")
image_data = np.asarray(image)
image_data_blue = image_data[:,:,2]
median_blue = np.median(image_data_blue)
sample_images = create_sample_set(image_data_blue>median_blue)
plt.figure(1)
for i in range(36):
    plt.subplot(6,6,i+1)
    plt.imshow(sample_images[i,...])
    plt.axis("off")
plt.subplots_adjust(0,0,1,1,0,0)

# determine per-pixel variablility, std() over all images
variability = sample_images.std(axis=0).sum(axis=2)

# show image of these variabilities
plt.figure(2)
plt.imshow(variability, cmap=plt.cm.gray, interpolation="nearest", origin="lower")

# determine bounding box
mean_variability = variability.mean()
non_empty_columns = np.where(variability.min(axis=0)<mean_variability)[0]
non_empty_rows = np.where(variability.min(axis=1)<mean_variability)[0]
boundingBox = (min(non_empty_rows), max(non_empty_rows), min(non_empty_columns), max(non_empty_columns))

# plot and print boundingBox
bb = boundingBox
plt.plot([bb[2], bb[3], bb[3], bb[2], bb[2]],
         [bb[0], bb[0],bb[1], bb[1], bb[0]],
         "r-")
plt.xlim(0,variability.shape[1])
plt.ylim(variability.shape[0],0)

print boundingBox
plt.show()
于 2013-02-08T07:39:46.040 回答
12

我创建了第二个答案,而不是更多地扩展我的第一个答案。我使用相同的方法,但在您的新示例上。唯一的区别是:我使用一组固定阈值而不是自动确定它。如果你可以玩它,这就足够了。

import numpy as np
import PIL
import matplotlib.pyplot as plt
import glob

filenames = glob.glob("14767594/*.jpg")
images = [np.asarray(PIL.Image.open(fn)) for fn in filenames]
sample_images = np.concatenate([image.reshape(1,image.shape[0], image.shape[1],image.shape[2]) 
                            for image in images], axis=0)
                                                        
plt.figure(1)
for i in range(sample_images.shape[0]):
    plt.subplot(2,2,i+1)
    plt.imshow(sample_images[i,...])
    plt.axis("off")
plt.subplots_adjust(0,0,1,1,0,0)

# determine per-pixel variablility, std() over all images
variability = sample_images.std(axis=0).sum(axis=2)

# show image of these variabilities
plt.figure(2)
plt.imshow(variability, cmap=plt.cm.gray, interpolation="nearest", origin="lower")

# determine bounding box
thresholds = [5,10,20]
colors = ["r","b","g"]
for threshold, color in zip(thresholds, colors): #variability.mean()
    non_empty_columns = np.where(variability.min(axis=0)<threshold)[0]
    non_empty_rows = np.where(variability.min(axis=1)<threshold)[0]
    boundingBox = (min(non_empty_rows), max(non_empty_rows), min(non_empty_columns), max(non_empty_columns))
    
    # plot and print boundingBox
    bb = boundingBox
    plt.plot([bb[2], bb[3], bb[3], bb[2], bb[2]],
             [bb[0], bb[0],bb[1], bb[1], bb[0]],
             "%s-"%color, 
             label="threshold %s" % threshold)
    print boundingBox

plt.xlim(0,variability.shape[1])
plt.ylim(variability.shape[0],0)
plt.legend()

plt.show()

生产的地块:

输入图像 输出

您的要求与认知神经科学中的ERP密切相关。您拥有的输入图像越多,随着信噪比的增加,这种方法的效果就越好。

于 2013-02-13T14:48:40.620 回答