在我的应用程序的某些部分,我将一个 17MB 的日志文件解析为一个列表结构——每行一个 LogEntry。大约有 100K 行/日志条目,这意味着大约。每行 170 个字节。令我惊讶的是,我用尽了堆空间,即使我指定 128MB(256MB 似乎足够了)。10MB 的文本如何变成一个对象列表导致空间增加十倍?
我知道 String 对象使用的空间量至少是 ANSI 文本(Unicode,一个字符 = 2 个字节)的两倍,但这至少消耗了四倍。
我正在寻找的是 n LogEntries 的 ArrayList 将消耗多少的近似值,或者我的方法可能如何创建使情况恶化的无关对象  (请参阅下面的评论String.trim())
这是我的 LogEntry 类的数据部分
public class LogEntry { 
    private Long   id; 
    private String system, version, environment, hostName, userId, clientIP, wsdlName, methodName;
    private Date                timestamp;
    private Long                milliSeconds;
    private Map<String, String> otherProperties;
这是阅读的部分
public List<LogEntry> readLogEntriesFromFile(File f) throws LogImporterException {
    CSVReader reader;
    final String ISO_8601_DATE_PATTERN = "yyyy-MM-dd HH:mm:ss,SSS";
    List<LogEntry> logEntries = new ArrayList<LogEntry>();
    String[] tmp;
    try {
        int lineNumber = 0;
        final char DELIM = ';';
        reader = new CSVReader(new InputStreamReader(new FileInputStream(f)), DELIM);
        while ((tmp = reader.readNext()) != null) {
            lineNumber++;
            if (tmp.length < LogEntry.getRequiredNumberOfAttributes()) {
                String tmpString = concat(tmp);
                if (tmpString.trim().isEmpty()) {
                    logger.debug("Empty string");
                } else {
                    logger.error(String.format(
                            "Invalid log format in %s:L%s. Not enough attributes (%d/%d). Was %s . Continuing ...",
                            f.getAbsolutePath(), lineNumber, tmp.length, LogEntry.getRequiredNumberOfAttributes(), tmpString)
                    );
                }
                continue;
            }
            List<String> values = new ArrayList<String>(Arrays.asList(tmp));
            String system, version, environment, hostName, userId, wsdlName, methodName;
            Date timestamp;
            Long milliSeconds;
            Map<String, String> otherProperties;
            system = values.remove(0);
            version = values.remove(0);
            environment = values.remove(0);
            hostName = values.remove(0);
            userId = values.remove(0);
            String clientIP = values.remove(0);
            wsdlName = cleanLogString(values.remove(0));
            methodName = cleanLogString(stripNormalPrefixes(values.remove(0)));
            timestamp = new SimpleDateFormat(ISO_8601_DATE_PATTERN).parse(values.remove(0));
            milliSeconds = Long.parseLong(values.remove(0));
            /* remaining properties are the key-value pairs */
            otherProperties = parseOtherProperties(values);
            logEntries.add(new LogEntry(system, version, environment, hostName, userId, clientIP,
                    wsdlName, methodName, timestamp, milliSeconds, otherProperties));
        }
        reader.close();
    } catch (IOException e) {
        throw new LogImporterException("Error reading log file: " + e.getMessage());
    } catch (ParseException e) {
        throw new LogImporterException("Error parsing logfile: " + e.getMessage(), e);
    }
    return logEntries;
}
用于填充地图的实用函数
private Map<String, String> parseOtherProperties(List<String> values) throws ParseException {
    HashMap<String, String> map = new HashMap<String, String>();
    String[] tmp;
    for (String s : values) {
        if (s.trim().isEmpty()) {
            continue;
        }
        tmp = s.split(":");
        if (tmp.length != 2) {
            throw new ParseException("Could not split string into key:value :\"" + s + "\"", s.length());
        }
        map.put(tmp[0], tmp[1]);
    }
    return map;
}