1

我正在尝试读取一个 csv 文件,其中一个示例:

datetime,check,lat,lon,co_alpha,atn,status,bc
2012-10-27 15:00:59,2,0,0,2.427,,,
2012-10-27 15:01:00,2,0,0,2.407,,,
2012-10-27 15:02:49,2,0,0,2.207,-17.358,0,-16162
2012-10-27 15:02:50,2,0,0,2.207,-17.354,0,8192
2012-10-27 15:02:51,1,0,0,2.207,-17.358,0,-8152
2012-10-27 15:02:52,1,0,0,2.207,-17.358,0,648
2012-10-27 15:06:03,0,51.195076,4.444407,2.349,-17.289,0,4909
2012-10-27 15:06:04,0,51.195182,4.44427,2.344,-17.289,0,587
2012-12-05 09:21:34,,,,,42.960,1,16430
2012-12-05 09:21:35,,,,,42.962,1,3597

我遇到的问题是,在只有整数的列中,0 被转换为 NaN(例如列“检查”和“状态”,这些是只有整数的列,但该列被读取为浮点数,因为存在真正的缺失值) . 但我只希望将空值转换为 NaN,而不是零。

这就是我得到的:

>>> pd.read_clipboard(sep=',', parse_dates=True, index_col=0)
                     check        lat       lon  co_alpha     atn  status     bc
datetime                                                                        
2012-10-27 15:00:59      2   0.000000  0.000000     2.427     NaN     NaN    NaN
2012-10-27 15:01:00      2   0.000000  0.000000     2.407     NaN     NaN    NaN
2012-10-27 15:02:49      2   0.000000  0.000000     2.207 -17.358     NaN -16162
2012-10-27 15:02:50      2   0.000000  0.000000     2.207 -17.354     NaN   8192
2012-10-27 15:02:51      1   0.000000  0.000000     2.207 -17.358     NaN  -8152
2012-10-27 15:02:52      1   0.000000  0.000000     2.207 -17.358     NaN    648
2012-10-27 15:06:03    NaN  51.195076  4.444407     2.349 -17.289     NaN   4909
2012-10-27 15:06:04    NaN  51.195182  4.444270     2.344 -17.289     NaN    587
2012-12-05 09:21:34    NaN        NaN       NaN       NaN  42.960       1  16430
2012-12-05 09:21:35    NaN        NaN       NaN       NaN  42.962       1   3597

因此,在“检查”和“状态”列中,有很多 NaN。在“纬度”和“经度”列中,0 不会转换为 NaN。

  • 使用na_values=''andkeep_default_na=False并没有帮助。有没有办法指定不将 int 0 转换为 NaN?或者这是一个错误?

  • dtype我可以使用关键字将特定列的 dtype 指定为 int 。这将 0 保留为 0,但问题是这些列还包含真正的 NaN(空值)。因此,在这种情况下,这些值也会转换为 0,因为在 int 列中不能有 NaN。出于这个原因,我必须将所有列保留为浮点数。


编辑:升级到 pandas 0.10.1 后,即使没有指定keep_default_naand ,它也能按预期工作na_values

>>> pd.read_clipboard(sep=',', parse_dates=True, index_col=0)
                     check        lat       lon  co_alpha     atn  status     bc
datetime                                                                        
2012-10-27 15:00:59      2   0.000000  0.000000     2.427     NaN     NaN    NaN
2012-10-27 15:01:00      2   0.000000  0.000000     2.407     NaN     NaN    NaN
2012-10-27 15:02:49      2   0.000000  0.000000     2.207 -17.358       0 -16162
2012-10-27 15:02:50      2   0.000000  0.000000     2.207 -17.354       0   8192
2012-10-27 15:02:51      1   0.000000  0.000000     2.207 -17.358       0  -8152
2012-10-27 15:02:52      1   0.000000  0.000000     2.207 -17.358       0    648
2012-10-27 15:06:03      0  51.195076  4.444407     2.349 -17.289       0   4909
2012-10-27 15:06:04      0  51.195182  4.444270     2.344 -17.289       0    587
2012-12-05 09:21:34    NaN        NaN       NaN       NaN  42.960       1  16430
2012-12-05 09:21:35    NaN        NaN       NaN       NaN  42.962       1   3597
4

1 回答 1

5

您必须首先设置keep_default_naFalse

df = pd.read_clipboard(sep=',', index_col=0, keep_default_na=False, na_values='')

In [2]: df
Out[2]: 
                     check        lat       lon  co_alpha     atn  status     bc
datetime                                                                        
2012-10-27 15:00:59      2   0.000000  0.000000     2.427     NaN     NaN    NaN
2012-10-27 15:01:00      2   0.000000  0.000000     2.407     NaN     NaN    NaN
2012-10-27 15:02:49      2   0.000000  0.000000     2.207 -17.358       0 -16162
2012-10-27 15:02:50      2   0.000000  0.000000     2.207 -17.354       0   8192
2012-10-27 15:02:51      1   0.000000  0.000000     2.207 -17.358       0  -8152
2012-10-27 15:02:52      1   0.000000  0.000000     2.207 -17.358       0    648
2012-10-27 15:06:03      0  51.195076  4.444407     2.349 -17.289       0   4909
2012-10-27 15:06:04      0  51.195182  4.444270     2.344 -17.289       0    587
2012-12-05 09:21:34    NaN        NaN       NaN       NaN  42.960       1  16430
2012-12-05 09:21:35    NaN        NaN       NaN       NaN  42.962       1   3597

从文档字符串read_tables

keep_default_na: bool, default True
     如果na_values指定并且keep_default_naFalse默认NaN
    值被覆盖,否则它们被附加到

na_values: list-like or dict, default识别为 NA/NaN 的None
    附加字符串。如果 dict 通过,特定的每列 NA 值

于 2013-02-06T11:09:25.213 回答