我有一个包含 27 个栅格的栅格堆栈。我在空间多边形数据框中有 27 个相应的多边形。我想将多边形 [i] 覆盖在栅格 [i] 上,从栅格 [i] 中提取和求和值,获取多边形 [i] 内像元数的计数,然后将总和值除以 #的细胞。换句话说,栅格是利用率分布或内核使用密度。我想知道多边形与栅格重叠的区域有很多用途。我想除以多边形中的单元格数以考虑多边形的大小。
我有一个提供给我的脚本来执行此操作,只是它的编写目的是仅通过数据框中的任意数量的空间多边形从 1 个栅格中提取数据。它有效,它丑陋,我现在想把它转换成更流线的东西。我只希望我身边有人可以提供帮助,因为这可能需要一段时间?
这是我得到的代码,也是我对正在发生的事情的总结:
msum99Kern07 = SpatialPolygonDataFrame (many polygons)
KERNWolfPIX07m = Raster (this is a single raster, I have 27 rasters I put into a stack
)
#Extracting value from raster to many polygons
sRISK_Moose07m<- extract(KERNWolfPIX07m, msum99Kern07,df=FALSE,method='bilinear')
#Calculate THE SUM FOR EACH polygon#
sRISK_Moose07m<-unlist(lapply(sRISK_Moose07m, function(x) if (!is.null(x)) sum(x, na.rm=TRUE) else NA ))
sRISK_Moose07m<-as.data.frame(sRISK_Moose07m)
#Im not sure why these next commands are needed Im only guessing
#data.frame(levels) as there are many polygons creating a dataframe to put the info into
ID_SUM_07<-as.data.frame(levels(as.factor(msum07locs$ID2)))
#ADD ID TO THE risk data frame
sRISK_Moose07m$ID<-ID_SUM_07[,1]
#NUMBER OF CELLS WITHIN POLYGON EXTRACT CELLS/ POLYGON
NB_SUM2007m<-cellFromPolygon(KERNWolfPIX07m, msum99Kern07)
NB_SUM07m<-unlist(lapply(NB_SUM2007m, function(x) if (!is.null(x)) length(x) else NA ))
#####CONVERT TO DATA FRAME
NB_SUM07m<-as.data.frame(NB_SUM07m)
###ADD THE NB OF CELLS TO THE RISK_SUM FILE###
sRISK_Moose07m$NB_CELLS<-NB_SUM07m[,1]
###DIVIDING VALUE by NB CELLS##
sRISK_Moose07m$DIVID<-sRISK_Moose07m$sRISK_Moose07m/sRISK_Moose07m$NB_CELLS
现在,我有包含 27 个多边形的空间多边形数据框和包含 27 个栅格的栅格堆栈。我想选择 raster[i] 和 polygon[i] 并提取、求和并计算重叠区域的核密度。要记住的一件事,我可能会收到一个错误,因为多边形和栅格可能不重叠......我根本不知道如何在 R 中检查这一点。
我的脚本我已经开始了:
moose99kern = spatial polygon data frame 27 moose
Rastwtrial = stack of 27 rasters having the same unique name as the ID in moose99kern
mkernID=unique(moose99kern$id)
for (i in length(mkernID)){
r = Rastwtrial[Rastwtrial[[i]]== mkernID[i]] #pick frm Rasterstack the raster that has the same name
mp = moose99kern[moose99kern$id == mkernID[i]] #pick from spatialpolygondataframe the polygon that has the same name
RISK_MooseTrial<- extract(r, mp, df=T, method'bilinear')
risksum = (RISK_MooseTrial, function(x) if (!is.null(x)) sum(x, na.rm=TRUE) else NA )#sum all the values that were extracted from the raster
我的脚本甚至没有开始工作,因为我不知道如何索引光栅堆栈。但即便如此,一次通过 1 个栅格/1 个多边形,我不确定接下来在代码中要做什么。如果这对 StackOverflow 来说太过分了,我深表歉意。我只是严重卡住,无处可去。
这是2个人的多边形测试数据
dput(mtestpoly)
new("SpatialPolygonsDataFrame"
, data = structure(list(id = structure(1:2, .Label = c("F01001_1", "F07002_1"
), class = "factor"), area = c(1259.93082578125, 966.364499511719
)), .Names = c("id", "area"), row.names = c("F01001_1", "F07002_1"
), class = "data.frame")
, polygons = list(<S4 object of class structure("Polygons", package = "sp")>,
<S4 object of class structure("Polygons", package = "sp")>)
, plotOrder = 1:2
, bbox = structure(c(6619693.77161797, 1480549.31292137, 6625570.48348294,
1485861.5586371), .Dim = c(2L, 2L), .Dimnames = list(c("x", "y"
), c("min", "max")))
, proj4string = new("CRS"
, projargs = NA_character_
输入(Rastwtest)
new("RasterStack"
, filename = ""
, layers = list(<S4 object of class structure("RasterLayer", package = "raster")>,
<S4 object of class structure("RasterLayer", package = "raster")>)
, title = character(0)
, extent = new("Extent"
, xmin = 1452505.6959799
, xmax = 1515444.7110552
, ymin = 6575235.1959799
, ymax = 6646756.8040201
)
, rotated = FALSE
, rotation = new(".Rotation"
, geotrans = numeric(0)
, transfun = function ()
NULL
)
, ncols = 176L
, nrows = 200L
, crs = new("CRS"
, projargs = NA_character_
)
, z = list()
, layernames = "Do not use the layernames slot (it is obsolete and will be removed)\nUse function 'names'"
)