我目前有以下代码可以产生我想要的结果(Data_Index
和Data_Percentages
)
Input_Data <- read.csv("http://dl.dropbox.com/u/881843/RPubsData/gd/2010_pop_estimates.csv", row.names=1, stringsAsFactors = FALSE)
Input_Data <- data.frame(head(Input_Data))
Rows <-nrow(Input_Data)
Vars <-ncol(Input_Data) - 1
#Total population column
TotalCount <- Input_Data[1]
#Total population sum
TotalCountSum <- sum(TotalCount)
Input_Data[1] <- NULL
VarNames <- colnames(Input_Data)
Data_Per_Row <- c()
Data_Index_Row <- c()
for (i in 1:Rows) {
#Proportion of all areas population found in this row
OAPer <- TotalCount[i, ] / TotalCountSum * 100
Data_Per_Col <- c()
Data_Index_Col <- c()
for(u in 1:Vars) {
# For every column value in the selected row
# the percentage of that value compared to the
# total population (TotalCount) for that row is calculated
VarPer <- Input_Data[i, u] / TotalCount[i, ] * 100
# Once the percentage is calculated the index
# score is calculated by diving this percentage
# by the proportion of the total population in that
# area compared to all areas
VarIndex <- VarPer / OAPer * 100
# Binds results for all columns in the row
Data_Per_Col <- cbind(Data_Per_Col, VarPer)
Data_Index_Col <- cbind(Data_Index_Col, VarIndex)
}
# Binds results for completed row with previously completed rows
Data_Per_Row <- rbind(Data_Per_Row, Data_Per_Col)
Data_Index_Row <- rbind(Data_Index_Row, Data_Index_Col)
}
colnames(Data_Per_Row) <- VarNames
colnames(Data_Index_Row) <- VarNames
# Changes the index scores to range from -1 to 1
OldRange <- (max(Data_Index_Row) - min(Data_Index_Row))
NewRange <- (1 - -1)
Data_Index <- (((Data_Index_Row - min(Data_Index_Row)) * NewRange) / OldRange) + -1
Data_Percentages <- Data_Per_Row
# Final outputs
Data_Index
Data_Percentages
我遇到的问题是代码非常慢。我希望能够在具有 200,000 行和 200 列的数据集上使用它(目前使用代码大约需要 4 天)。我确信必须有一种方法可以加快这个过程,但我不确定具体如何。
代码所做的是(在此示例中)将人口计数表划分为年龄段和不同区域,并将其转换为百分比和指数分数。目前有 2 个循环,以便单独选择所有行和列中的每个值,并对它们执行计算。我认为正是这些循环使它运行缓慢,是否有任何替代方案可以产生相同的结果,但速度更快?谢谢你的尽心帮助。